Large Language Models

Multi-modal Foundation Models: Vision-Language Models (VLMs)

M. Soleymani Sharif University of Technology Fall 2023

Multi-modal data

- Multimodal data:
 - Input and output from different modalities (e.g. text-to-image, image-to-text)
 - Inputs are multimodal (e.g. a system that can process both text and images)
 - Outputs are multimodal (e.g. a system that can generate both text and images)

A Lesson from LLMs

Vision

Jianwei Yang's CVPR 2023 Tutorial: From Specialist to Generalist

A Lesson from LLMs

iuitimodal Foundation Models

CLIP: Models and Training Complexity

- Text encoder:
 - 12-layer Transformer with causal mask
- Image encoder:
 - ResNet families: RN50, RN101, RN50x4, RN50x16, RN50x64
 - ViT families: ViT-B/32, ViT-B/16, ViT-L/14

Vision-language models: Contrastive learning

- Contrastive training to bridge the image and text embedding spaces
- Making embedding of (image, text) pairs similar and that of non-pairs dissimilar
- This embedding space is super helpful for performing searches across modalities
 - Can return the best caption given an image
 - Has impressive capabilities for zero-shot adaptation to unseen tasks, without the need for fine-tuning

• ViT-L/14: 12 days on 256 V100 GPUs

CLIP for zero-shot learning

encodes all the text labels and compares them to the encoded image

CLIP's features outperform the features of the best ImageNet model on a wide variety of datasets. Radford et al. "Learning Transferable Visual Models From Natural Language Supervision", ICML 2021

Zero-shot CLIP outperforms few-shot linear probes

Large Multi-modal Models (LMMs) in their current form is primarily generates a text sequence.

Vision Language Tasks

	Image Captioning	Text-to Image Retrieval	Image-to-Text Retrieval	VQA	Text-to-Image Generation
Input	Image:	Query: A couple of zebra walking across a dirt road. A pool of images	Query:	Image: The set of the set of the road?	Text: A couple of zebra walking across a dirt road.
Output	A couple of zebra walking across a dirt road.		A couple of zebra walking across a dirt road.	A: to get to the other side (Selected from a pool of 3,129 answers in VQAv2 or generate answer)	
	Generation	Understanding	Understanding	Understanding/Generation	Generation

Source: P. Zhang and L. Zhang, A Tutorial On Vision Language Intelligence

CLIP: Summary

✓ CLIP improved open-vocabulary visual recognition capabilities through learning from Internet-scale image-text pairs.

X CLIP doesn't go directly from image to text or vice versa. It just connecting the image and text embedding spaces

- CLIP can only address limited use cases such as classification
- It crucially lack the ability to generate language which makes them less suitable to more open-ended tasks such as captioning or visual question answering

Survey of VLMs

Publication on VLMs

Zhang et al., "Vision-Language Models for Vision Tasks: A Survey", 2023

CLIP Variants

- Objective function or pretraining
 - Combining CLIP with label supervision (BASIC, UniCL, LiT, MOFI)
 - Contrastive + self-supervised image representation learning
 - Contrastive + Self-supervlised methods like SimCLR (SLIP, DeCLIP, nCLIP)
 - Contrastve + Masked Image Modeling (EVA, EVA-02, MVP)
 - Fine-grained matching loss (FILIP)
 - Region-level pretraining (RegionCLIP, GLIP)
 - Sigmoid loss for language-image pre-training (SigCLIP)

Vision Transfomer as Image Encoder Architecture

Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR 2021

Linear projection to D-dimensional vector

Add positional embedding: learned Ddim vector per position

Linear projection to D-dimensional vector

Output vectors

Exact same as NLP Transformer!

Add positional embedding: learned Ddim vector per position

Linear projection to D-dimensional vector

• Simply regressing the masked out image-text aligned vision features (*i.e.*, CLIP features) scales up well (to 1.0B parameters) and transfers well to various downstream tasks.

He et al., "Masked Autoencoders Are Scalable Vision Learners", 2021

GroupVIT

Xu et al., "GroupViT: Semantic Segmentation Emerges from Text Supervision", 2022

Learning to Prompt for VLMs

Describable Textures (DTD)

Prompt	Accurac	
photo of a [CLASS].	39.83	
photo of a [CLASS] texture.	40.25	
CLASS] texture.	42.32	
V] ₁ [V] ₂ [V] _M [CLASS].	63.58	
(c)		

Flowers102	Prompt	Accuracy	
Service Service	a photo of a [CLASS].	60.86	
	a flower photo of a [CLASS].	65.81	
	a photo of a [CLASS], a type of flower.	66.14	
	[V] ₁ [V] ₂ [V] _M [CLASS].	94.51	
	(b)		
EuroSAT	Prompt	Accuracy	
S. March	a photo of a [CLASS].	24.17	
	a satellite photo of [CLASS].	37.46	
	a centered satellite photo of [CLASS].	37.56	

(d)

 $[V]_1 [V]_2 \dots [V]_M [CLASS].$

Zhu et al., "Learning to Prompt for Vision-Language Models", 2021

83.53

Learning to Prompt for VLMs

	Source	Target			
Method	ImageNet	-V2	-Sketch	-A	-R
ResNet-50					
Zero-Shot CLIP	58.18	51.34	33.32	21.65	56.00
Linear Probe CLIP	55.87	45.97	19.07	12.74	34.86
CLIP + CoOp (M = 16)	62.95	55.11	32.74	22.12	54.96
CLIP + CoOp (M=4)	63.33	55.40	34.67	23.06	56.60
ResNet-101					
Zero-Shot CLIP	61.62	54.81	38.71	28.05	64.38
Linear Probe CLIP	59.75	50.05	26.80	19.44	47.19
CLIP + CoOp (M = 16)	66.60	58.66	39.08	28.89	63.00
CLIP + CoOp (M=4)	65.98	58.60	40.40	29.60	64.98
ViT-B/32					
Zero-Shot CLIP	62.05	54.79	40.82	29.57	65.99
Linear Probe CLIP	59.58	49.73	28.06	19.67	47.20
CLIP + CoOp (M = 16)	66.85	58.08	40.44	30.62	64.45
CLIP + CoOp (M=4)	66.34	58.24	41.48	31.34	65.78
ViT-B/16					
Zero-Shot CLIP	66.73	60.83	46.15	47.77	73.96
Linear Probe CLIP	65.85	56.26	34.77	35.68	58.43
CLIP + CoOp (M = 16)	71.92	64.18	46.71	48.41	74.32
CLIP + CoOp (M=4)	71.73	64.56	47.89	49.93	75.14

Vision-Language Models: Toward generative models

- Architecture
 - Dual encoders ---- CLIP & its mentioned variants
 - Encoder-decoder
 - Fusion decoder

Wang et al., "SimVLM: Simple Visual Language Model Pretraining with Weak Supervision", ICLR 2022

CoCa: Contrastive Captioner

- Use mixed image-text and image-label (JFT-3B) data for pre-training
- A generative branch for enhanced performance and enabling new capabilities (image captioning and VQA)
- CoCa aims to learn a better image encoder from scratch

CoCa: Contrastive Captioner

- Use mixed image-text and image-label (JFT-3B) data for pre-training
- A generative branch for enhanced performance and enabling new capabilities (image captioning and VQA)
- CoCa aims to learn a better image encoder from scratch

CoCa Architecture

- Unified single-encoder, dual-encoder, and encoder-decoder paradigms
 - one image-text foundation model with the capabilities of all three approaches
- Cross-attention is omitted in unimodal decoder layers to encode text-only representations
- Multimodal decoder cross-attending to image encoder outputs to learn multimodal representations.

Architecture of Multimodal Models

Architecture of Multimodal Models

Conclusion

- VLMs bridge the vision and language spaces
- VLMs showcase impressive capabilities for zero-shot adaptation to unseen tasks
- However, they are still restricted to tasks in a pre-defined form, struggling to match the open-ended task capabilities of LLMs
- A unified generalist framework is required that will be discussed in the next session

Questions

