Transformer Language models Lecture 2 - Decoder-only models

Artificial Intelligence Group Computer Engineering Department, SUT

-Language definition

Language Definition

Chomsky (1959: 137) "A language is a collection of **sentences** of **finite length** all constructed from a **finite alphabet** (or, where our concern is limited to syntax, a finite vocabulary) of symbols."

DNA Language

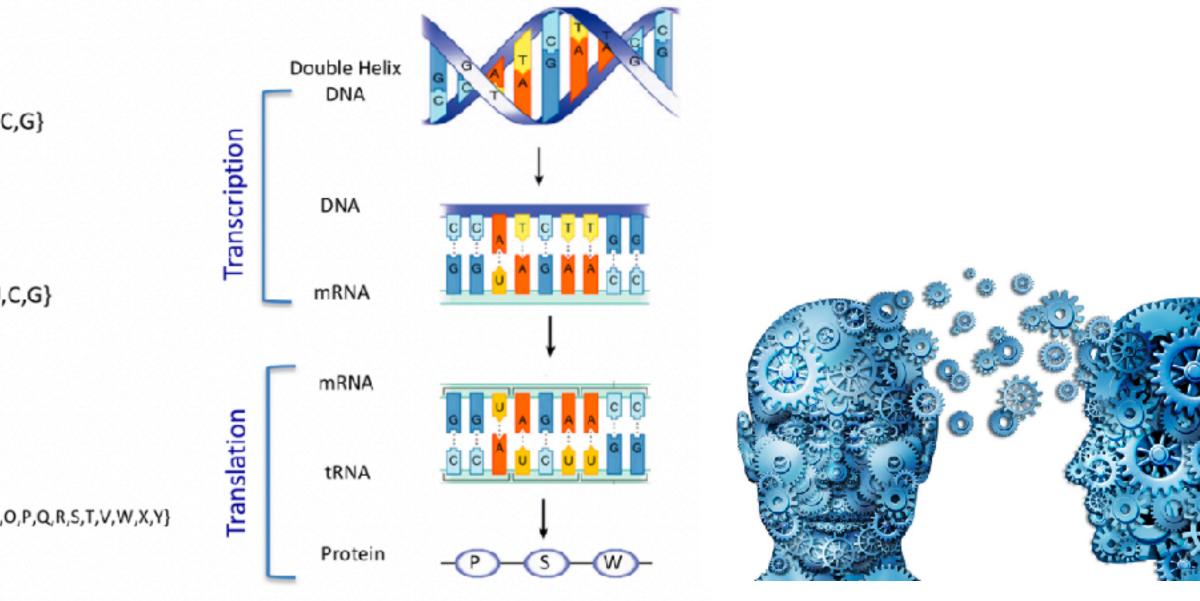
Sentences out of {A,T,C,G}

RNA Language

Sentences out of {A,U,C,G}

Protein Language

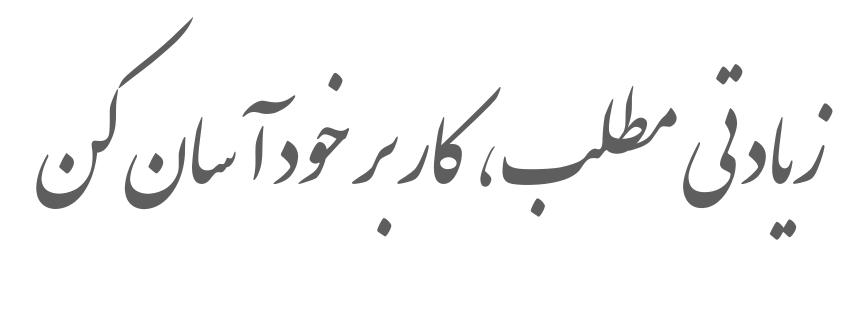
Sentences out of {A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,V,W,X,Y}



-Distributional Hypothesis

Distributional hypothesis

Firth (1950) "a word is characterized by the company it keeps"



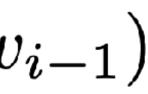
A picture of a good friendship circle in Persian culture Made with Bing Image Creator. Powered by DALL-E

Language modeling

$p(\text{start}, w_1, w_2, ..., w_n, \text{stop})$

$p(\text{start}, w_1, w_2, ...$

$$(w_n, \operatorname{stop}) = \prod_{i=1}^{n+1} \gamma(w_i \mid w_1, w_2, \dots, w_i)$$



N-gram Language modeling

 $p(\text{start}, w_1, w_2, ...$

Bi-gram

 $p(\text{start}, w_1, w_2, .)$

Markov (m $p(\text{start}, w_1, w_2, ...$

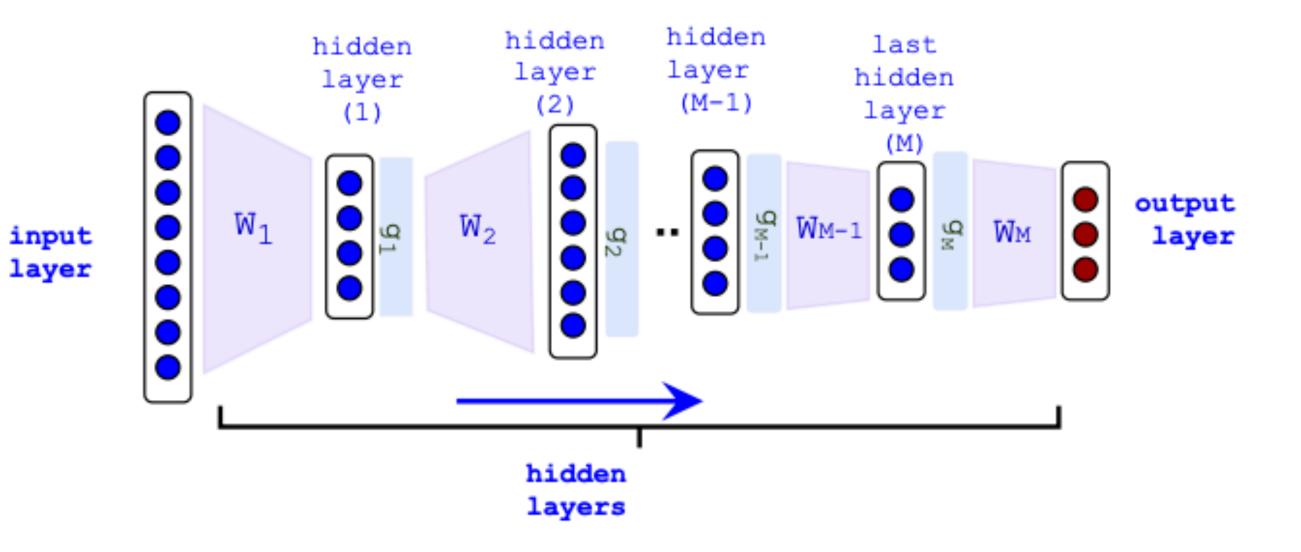
$$(w_n, \text{stop}) = \prod_{i=1}^{n+1} \gamma(w_i \mid w_1, w_2, \dots, w_{i-1})$$

$$(\dots, w_n, \operatorname{stop}) = \prod_{i=1}^{n+1} \gamma(w_i \mid w_{i-1})$$

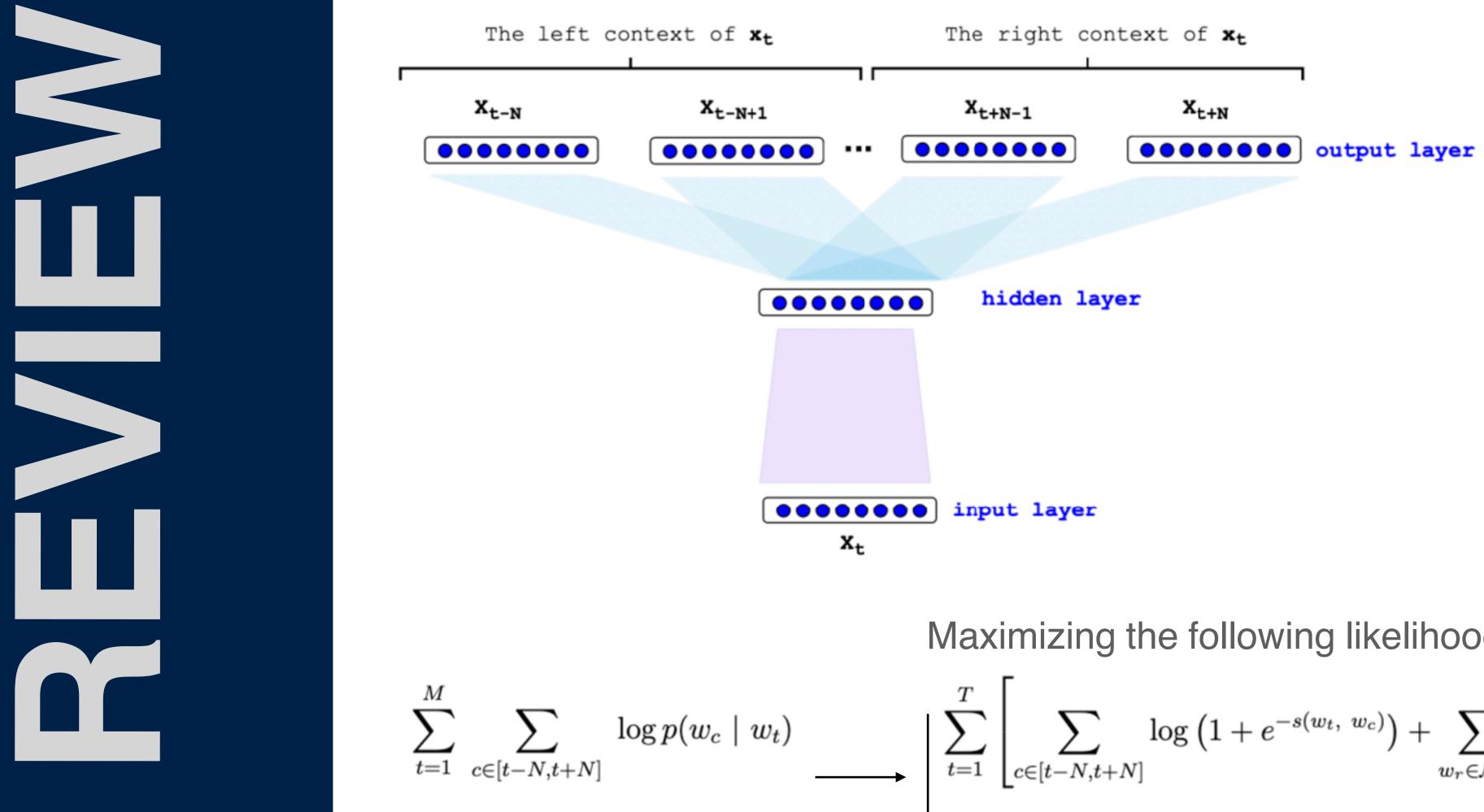
horder)
 $(\dots, w_n, \operatorname{stop}) = \prod_{i=1}^{n+1} \gamma(w_i \mid w_{i-m}, \dots, w_{i-1})$

Neural Language modeling

 $p(\text{start}, w_1, w_2, \ldots, w_n, \text{stop})$



Skip-gram – Similar to Language Models

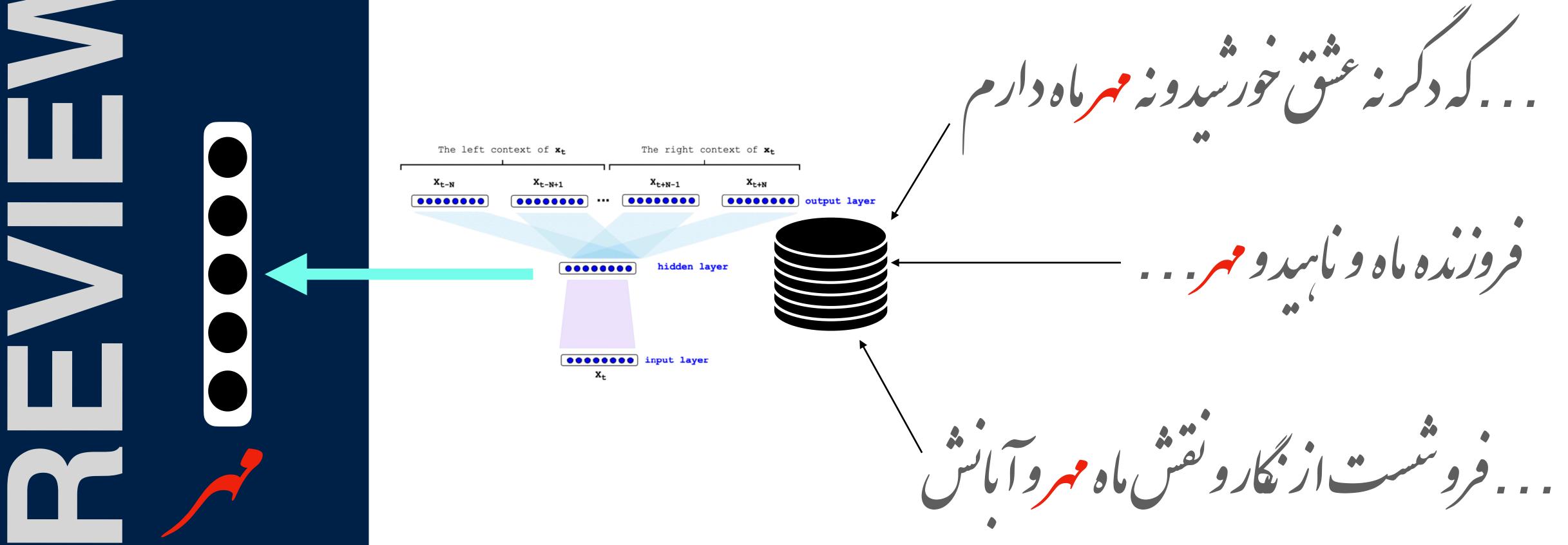


 $p(w_c \mid w_t; heta) = rac{e^{v_c \cdot v_t}}{\sum_{c' \in \mathcal{C}} e^{v_{c'} \cdot v_t}}$

Maximizing the following likelihood:

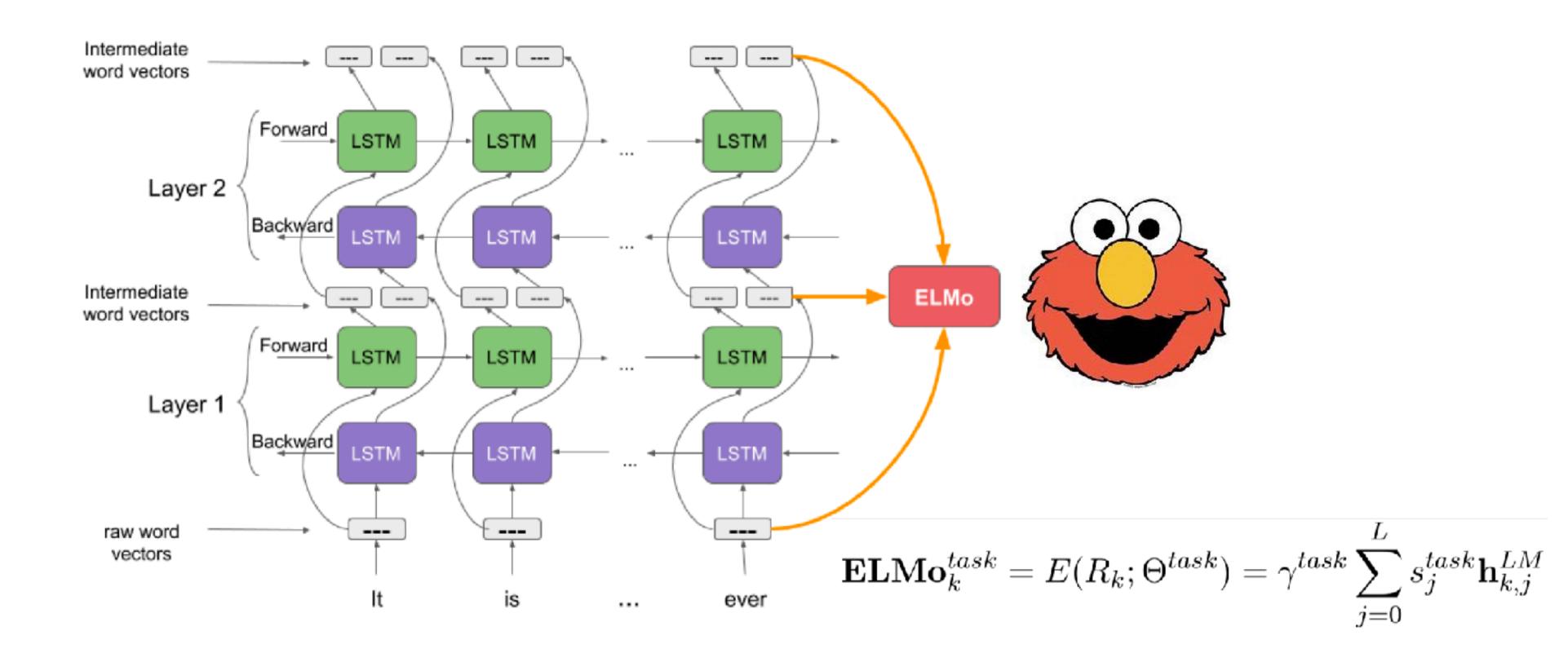
$$egin{aligned} &\sum_{t=1}^T \left[\sum_{c \in [t-N,t+N]} \log \left(1+e^{-s(w_t, \ w_c)}
ight) + \sum_{w_r \in \mathcal{N}_{t,c}} \log \left(1+e^{s(w_t, \ w_r)}
ight)
ight] \ &s(w_t, \ w_c) = {v_t}^ op \cdot v_c \end{aligned}$$

Fixed embeddings – Skip-gram



Fixed embeddings – Skip-gram

ELMO: Deep contextualized word representations



ELMo (Peters et al., 2018; NAACL 2018 best paper)

 Train two separate unidirectional LMs (left-to-right and right-to-left) based on LSTMs Feature-based approach: pre-trained representations used as input to task-specific models

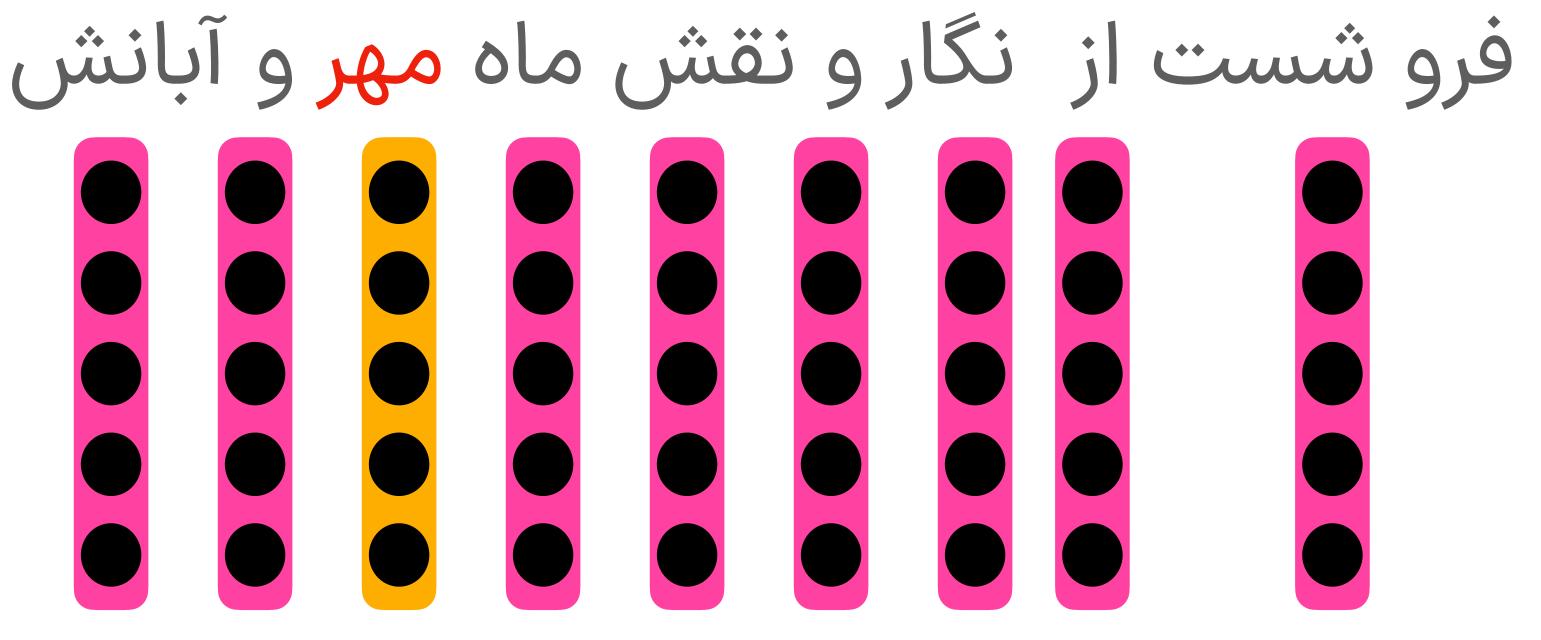
- Self-attention

How to contextualize the fixed embeddings?

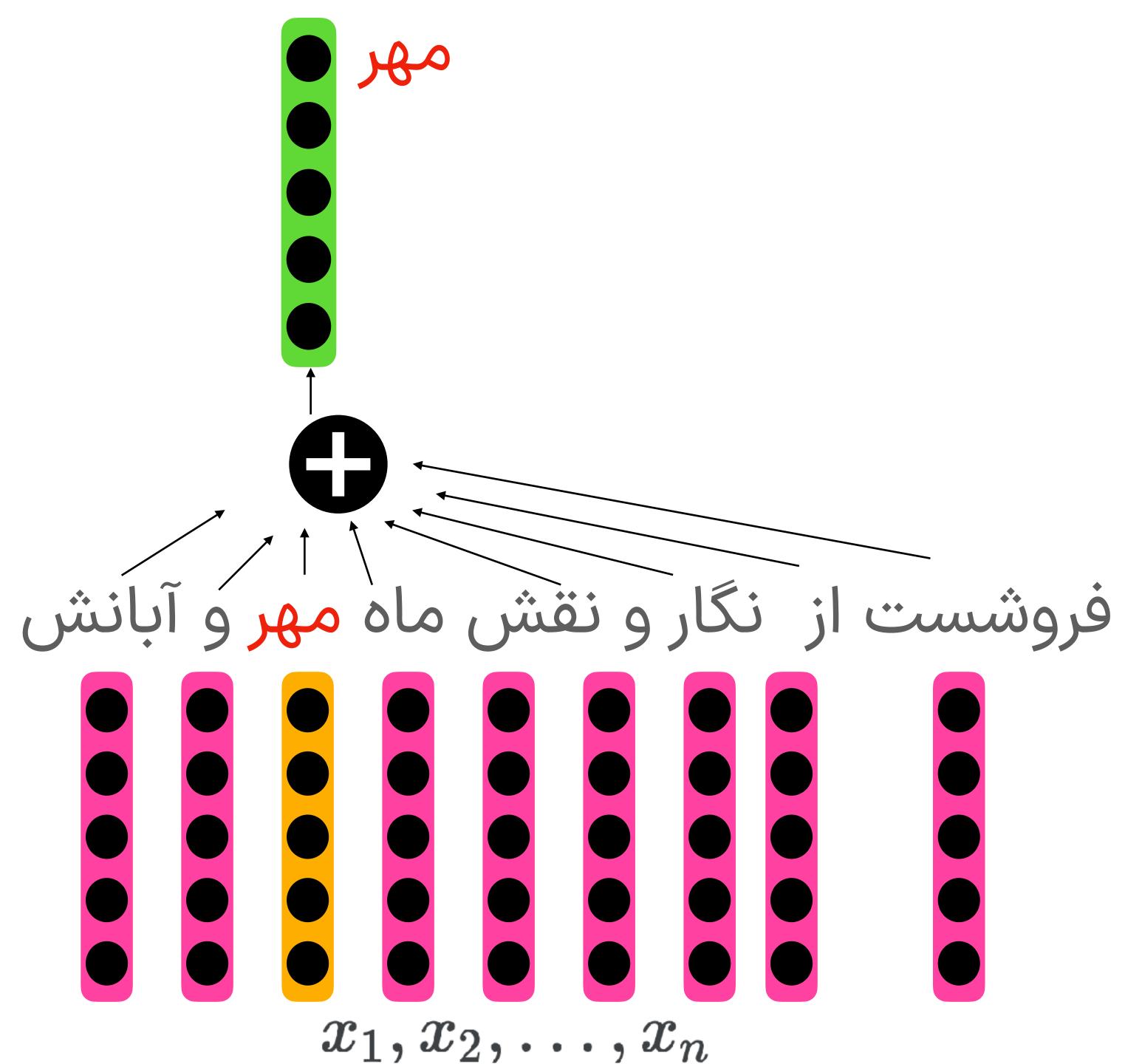
Self-Attention Idea

Output embeddings Input embeddings

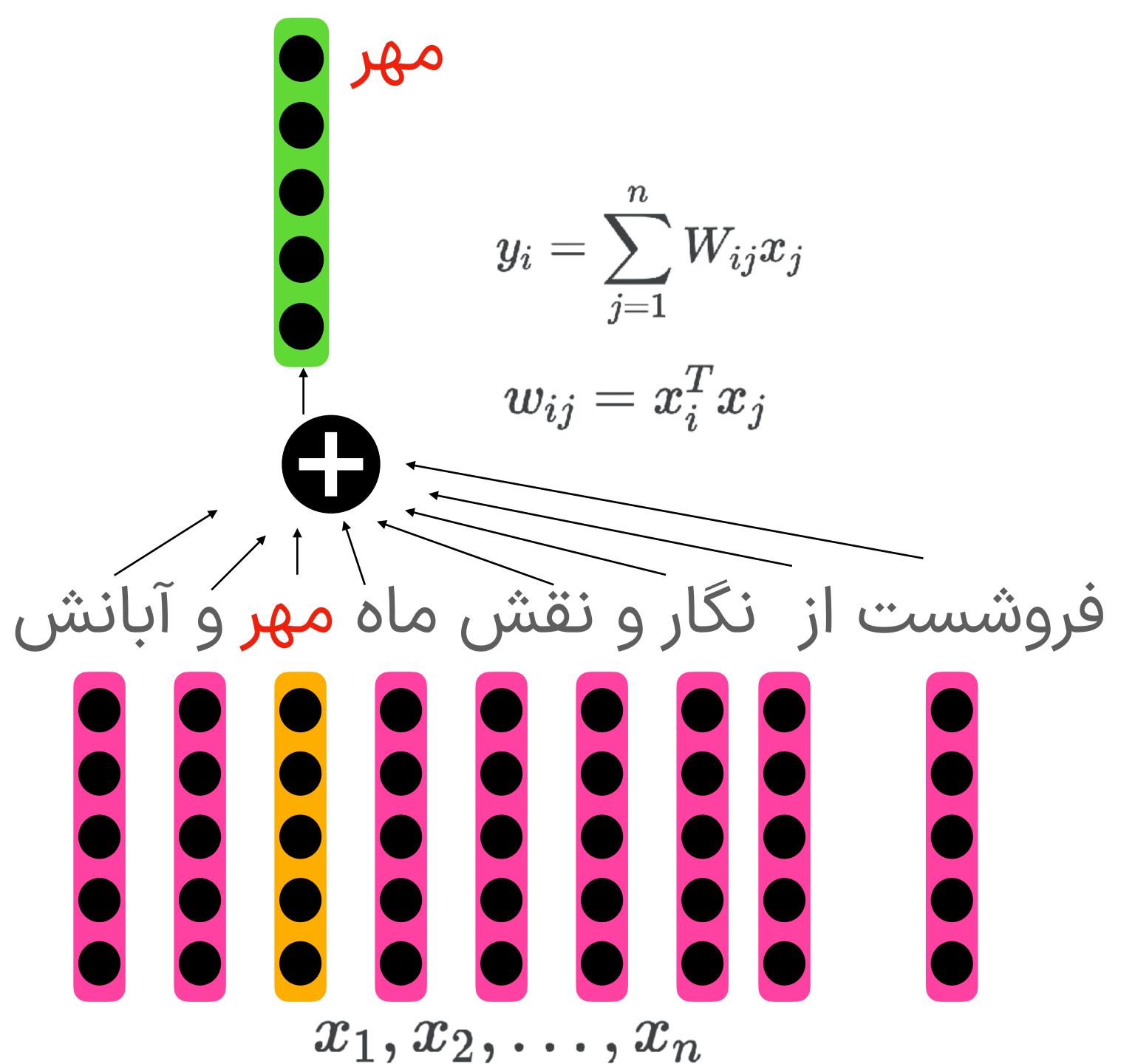
 x_1, x_2, \ldots, x_n y_1, y_2, \ldots, y_n



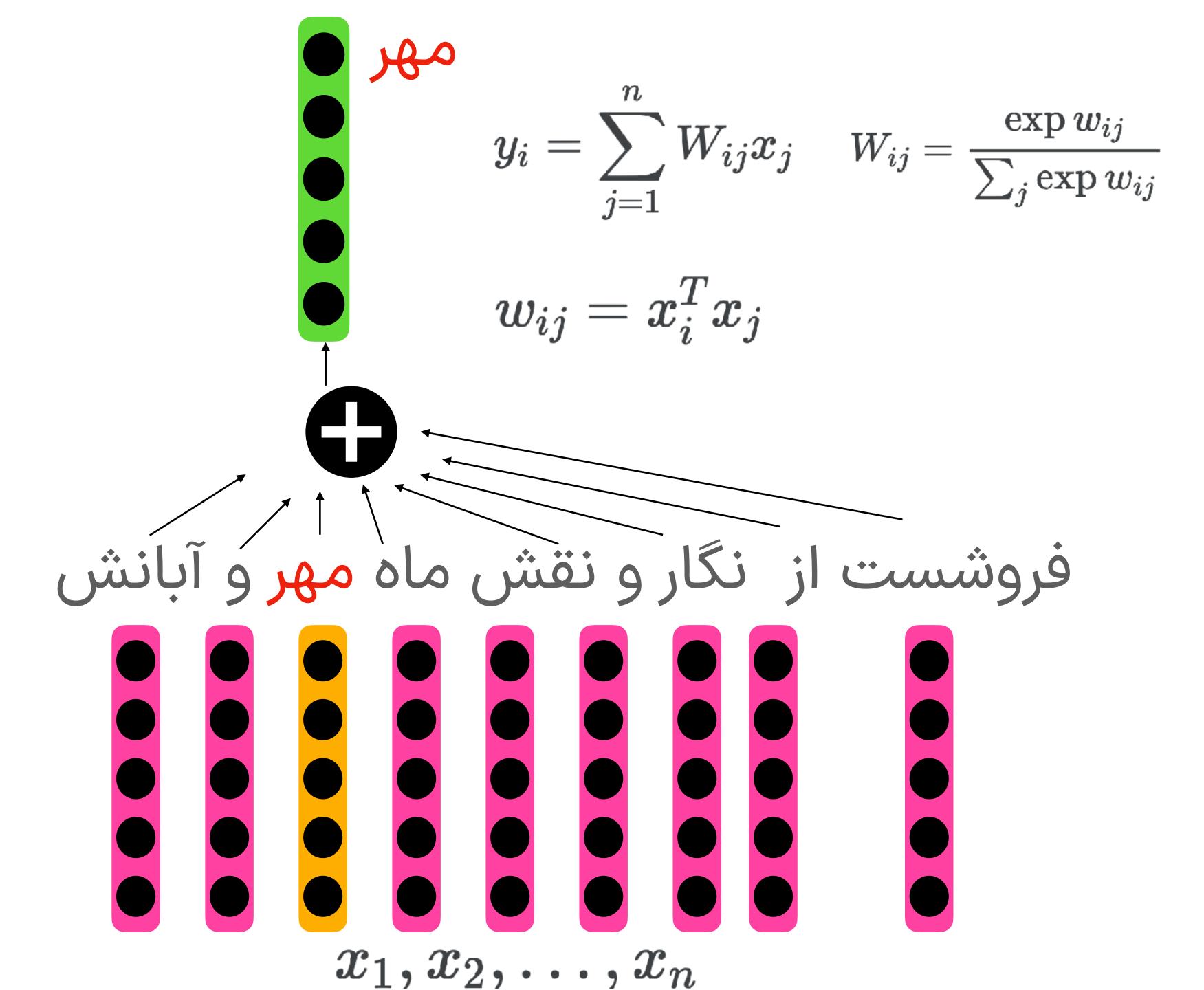
Self-Attention Idea

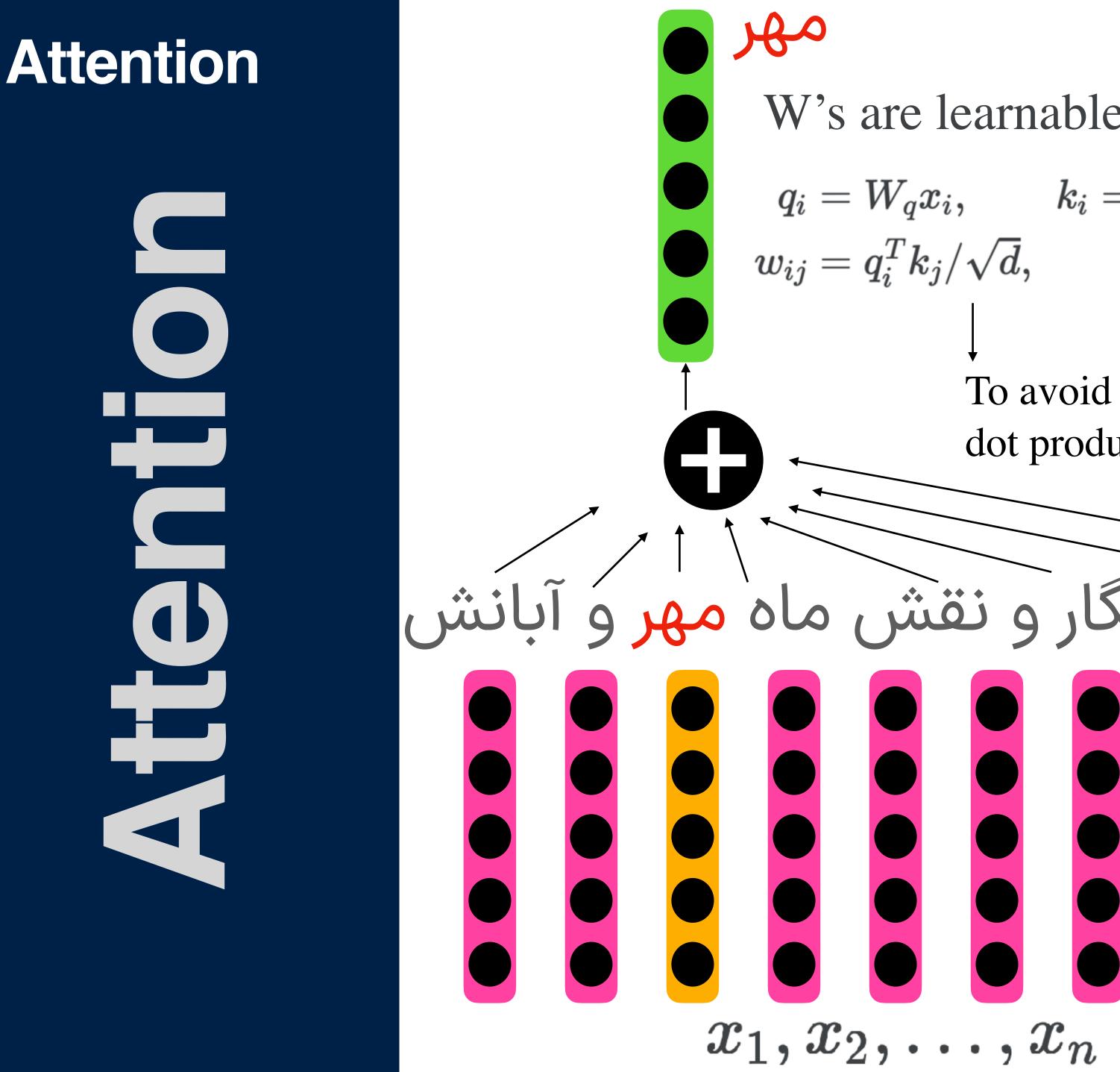


Self-Attention



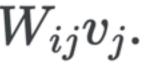
Self-Attention





W's are learnable *projection* matrices

$$W_{q}x_{i}, \quad k_{i} = W_{k}x_{i}, \quad v_{i} = W_{v}x_{i}$$
 $q_{i}^{T}k_{j}/\sqrt{d}, \quad W_{ij} = \operatorname{softmax}(w_{ij}), \quad y_{i} = \sum_{j} V_{j}$
To avoid arbitrarily large (positive or negative) dot product values



Attention

- <u>Inputs</u>: a query q and a set of key-value (k-v) pairs to an output All presented as vectors
- Output is weighted sum of values
- Weight of each value: inner product of query and corresponding key

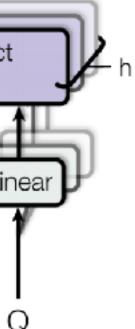
$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

Multihead Attention

AD $y_i = W_y \operatorname{concat}[y_i^1, y_i^2, \ldots].$

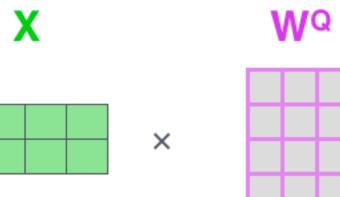
- $q_i^r = W_q^r x_i, \qquad k_i^r = W_k^r x_i, \qquad v_i^r = W_v^r x_i$ $w^r_{ij} = \langle q^r_i, k^r_j
 angle / \sqrt{d}, \qquad W^r_{ij} = ext{softmax}(w^r_{ij}), \qquad y^r_i = \sum_i W^r_{ij} v_j,$
- Linea Conca Scaled Dot-Product فروشست از نگار و نقش ماه مهر و آبانش Attention Linear 🚽 Linear

 x_1, x_2, \ldots, x_n

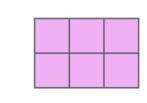


Matrix Attention

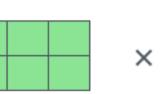
-

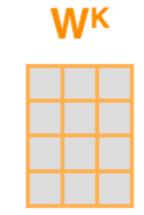


VV ~							



=



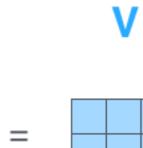


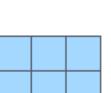
Κ





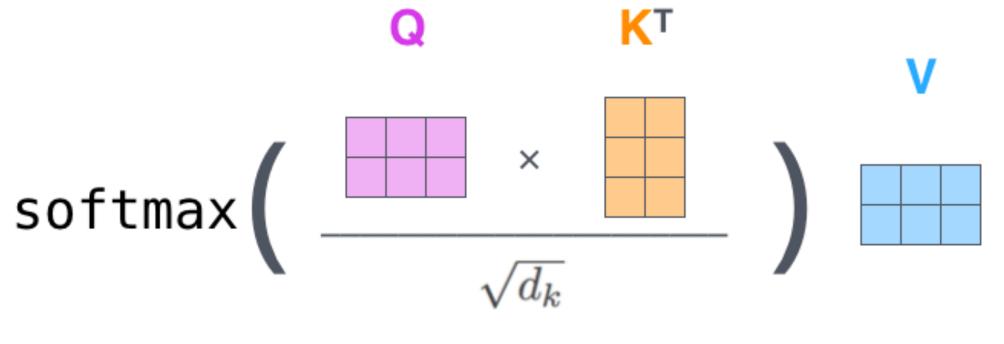
×

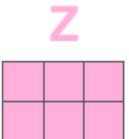




Matrix Attention

 \equiv



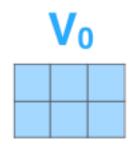


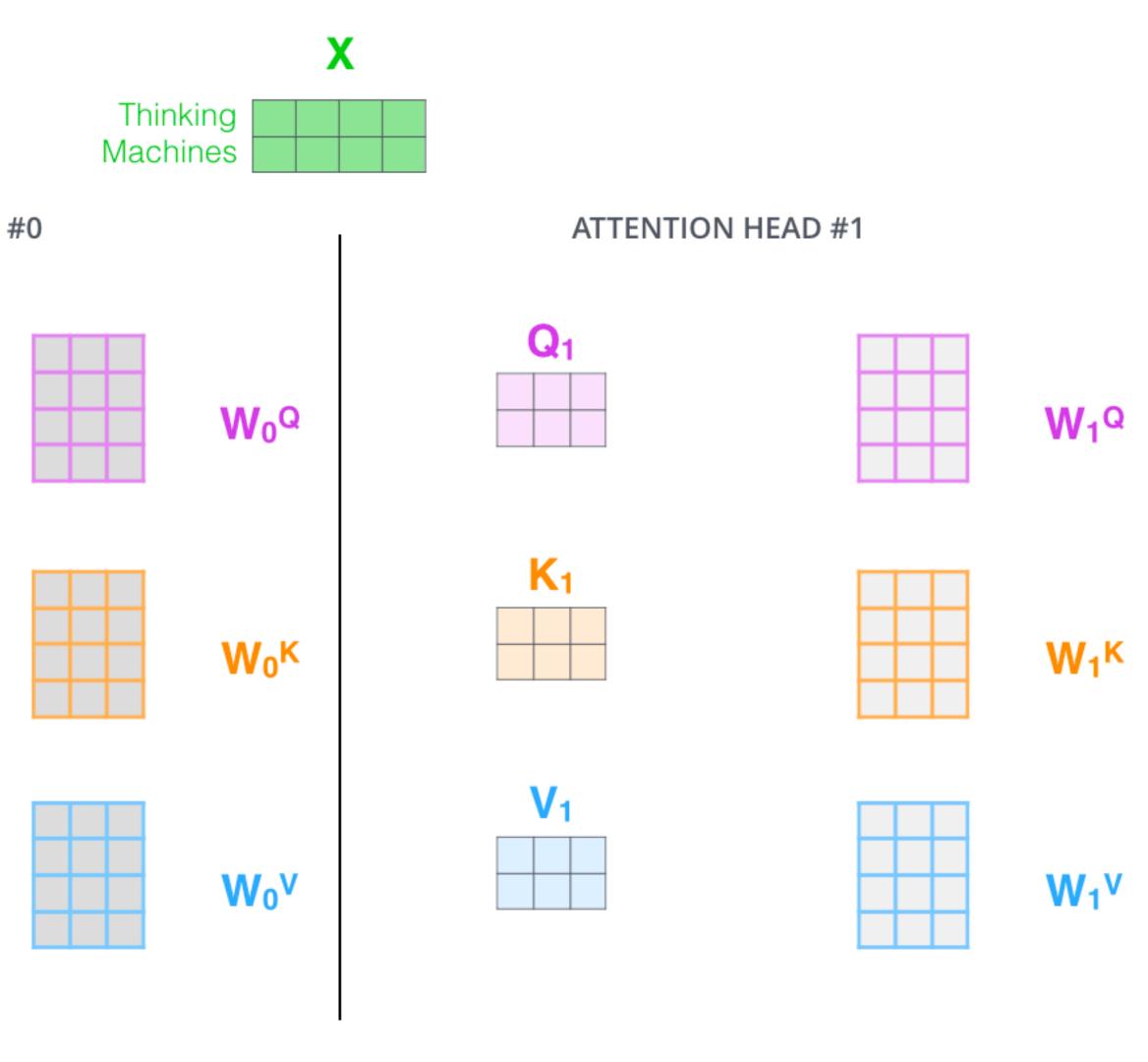
Matrix Attention

ATTENTION HEAD #0

\mathbf{Q}_0							

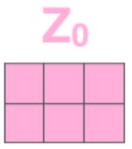
K ₀								

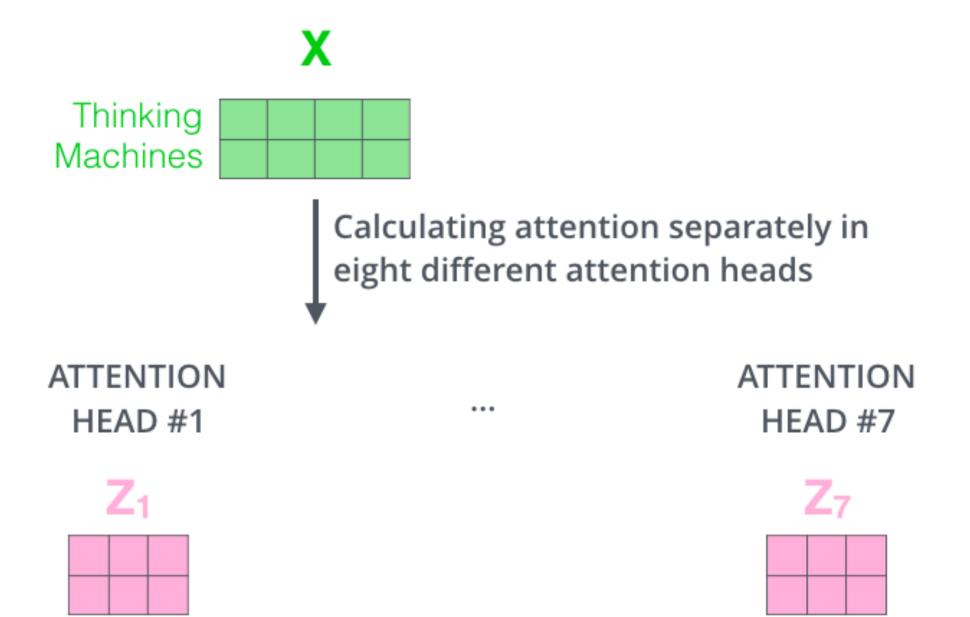




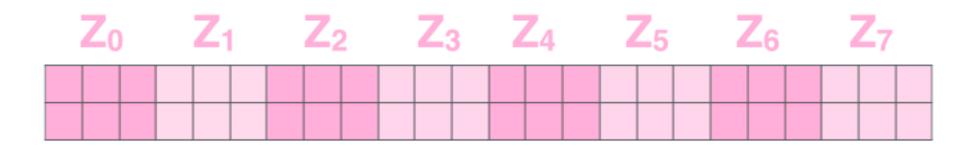
Matrix Attention

ATTENTION HEAD #0

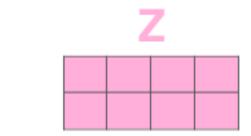




1) Concatenate all the attention heads



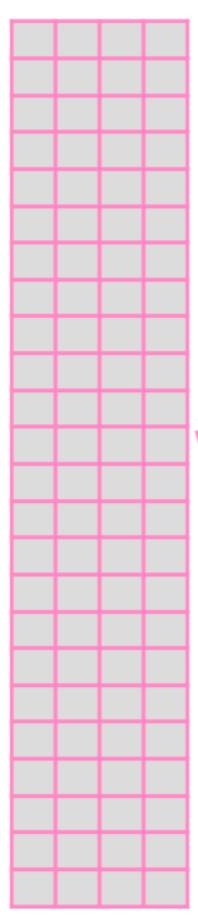
3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN



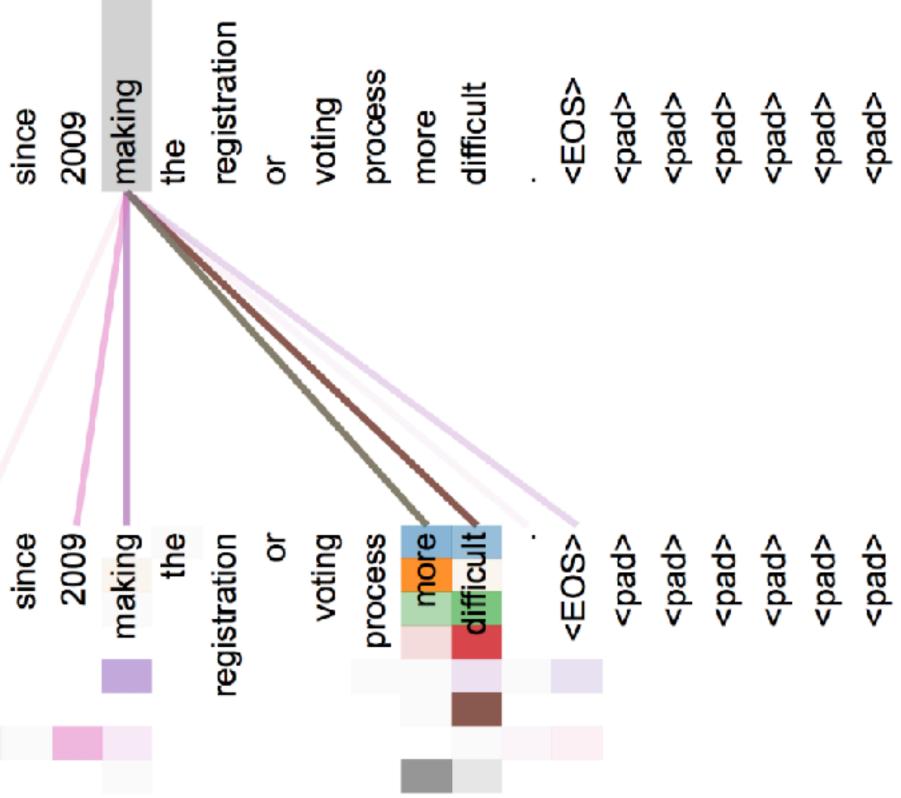
=

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х



Ħ	<u>s</u>	Ë	this	spirit	that	a	majority	of	American	governments	have	passed	new	laws	
Ħ	<u>s</u>	Ŀ	this	spirit	that	IJ	majority	of	American	governments	have	passed	new	laws	



- Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*Niki Parmar*Google BrainGoogle Researchnoam@google.comnikip@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †Łukasz Kaiser*University of TorontoGoogle Brainaidan@cs.toronto.edulukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

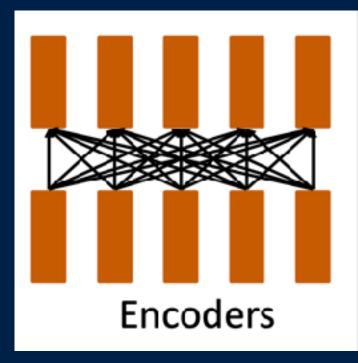
https://arxiv.org/abs/1706.03762

Jakob Uszkoreit* Google Research usz@google.com

-Next lecture

Transformer Language models Lecture 3 - Transformers (ii)

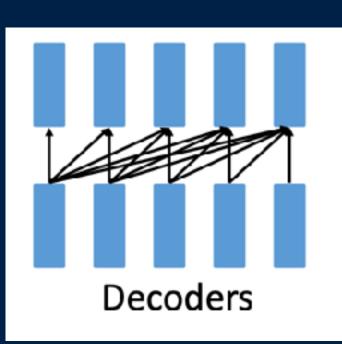
Artificial Intelligence Group Computer Engineering Department, SUT

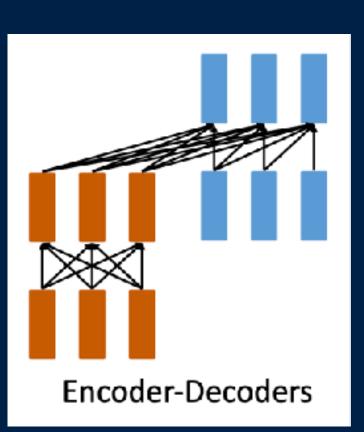


• Encoder-only (e.g., BERT): bidirectional contextual embeddings

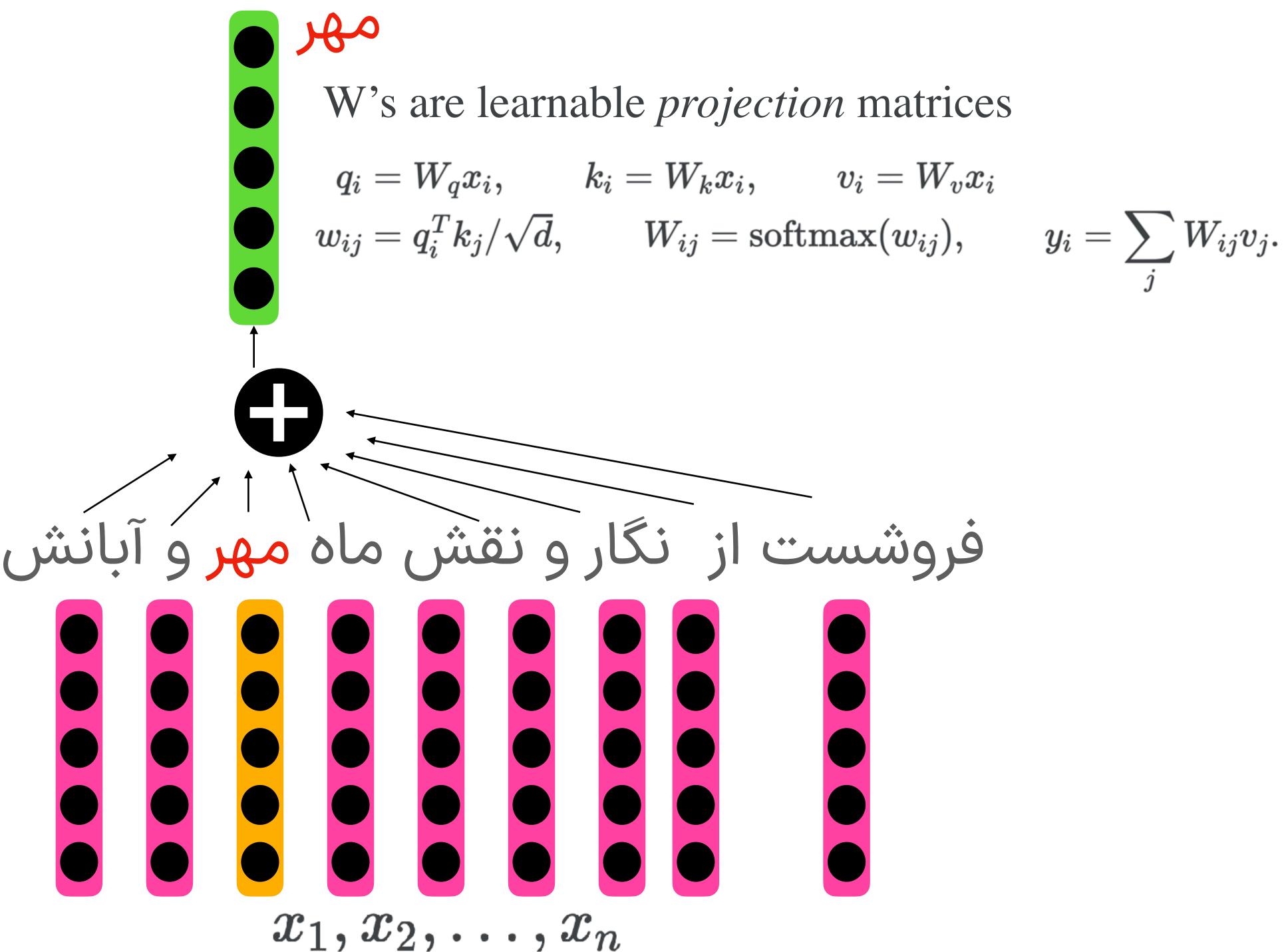
 Decoder-only (e.g., GPT-x): unidirectional contextual embeddings, generate one token at a time

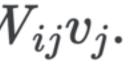
• Encoder-decoder (e.g., T5): encode input, decode output





Transformer Architectures





Why scaling by $\sqrt{d?}$

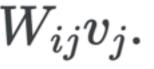
*A*o $q_i =$ $w_{ij} =$

ماہ مہر نش

 x_1,x_2,\ldots,x_n

W's are learnable *projection* matrices

$$W_{q}x_{i}, \quad k_{i} = W_{k}x_{i}, \quad v_{i} = W_{v}x_{i}$$
 $q_{i}^{T}k_{j}/\sqrt{d}, \quad W_{ij} = \operatorname{softmax}(w_{ij}), \quad y_{i} = \sum_{j} V_{j}$
To avoid arbitrarily large (positive or negative) dot product values

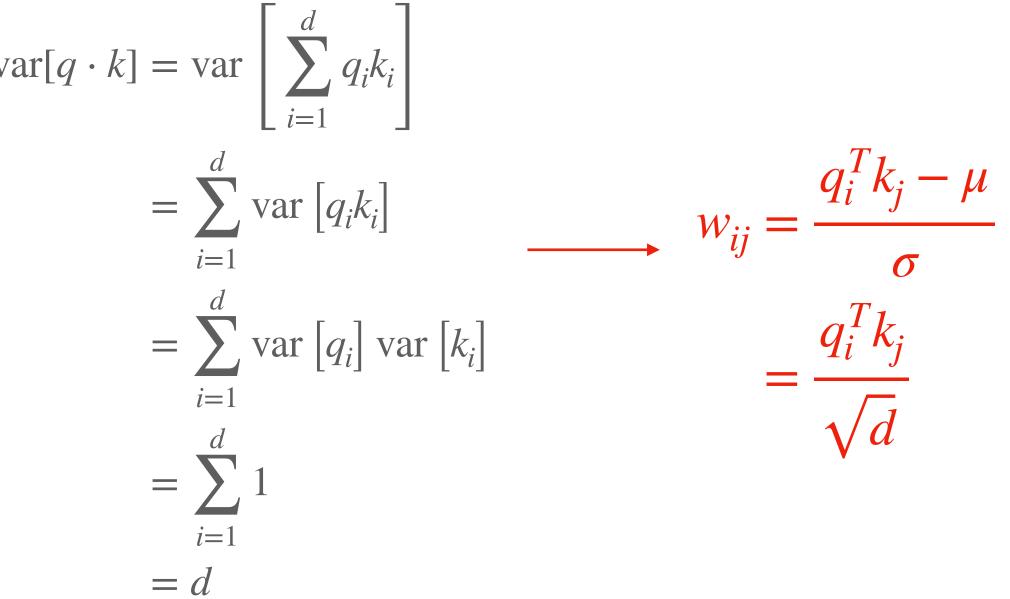


$$q_i = W_q x_i, \quad k_i = W_k x_i, \quad v_i = W_v x_i$$
$$w_{ij} = q_i^T k_j / \sqrt{d}, \quad W_{ij} = \text{softmax}\left(w_{ij}\right), \quad y_i = \sum_j W_{ij} v_j.$$

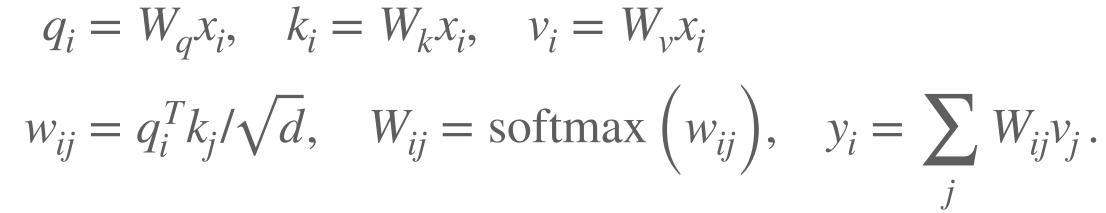
Assume that **q** and **k** are unit vectors with dimension **d**, whose dimensions are independent RV with the following properties:

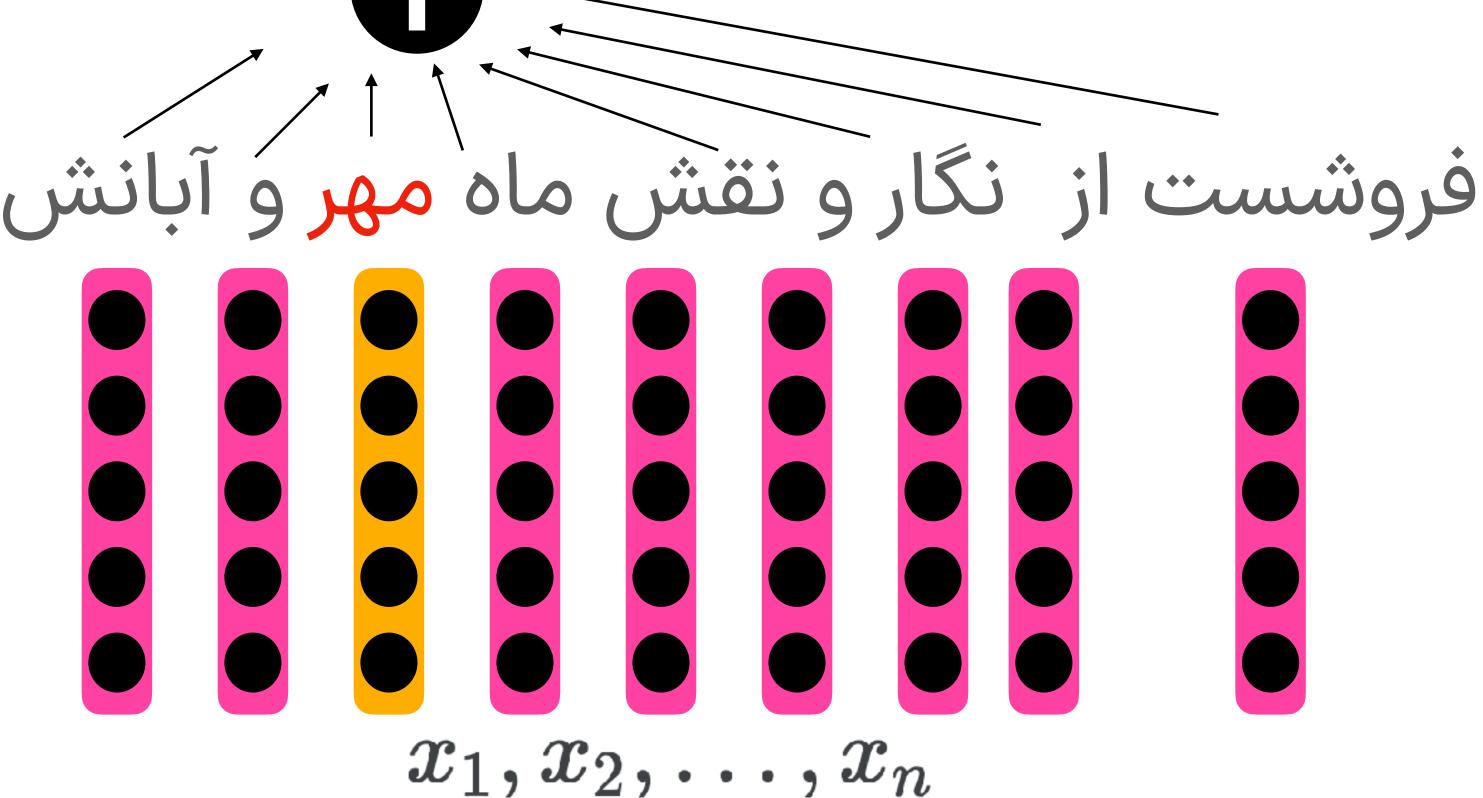
$$E[q \cdot k] = E\left[\sum_{i=1}^{d} q_i k_i\right] \quad \text{va}$$
$$= \sum_{i=1}^{d} E\left[q_i k_i\right]$$
$$= \sum_{i=1}^{d} E\left[q_i\right] E\left[k_i\right]$$
$$= 0$$

$$E[q_i] = E[k_i] = 0$$
$$var[q_i] = var[k_i] = 1$$



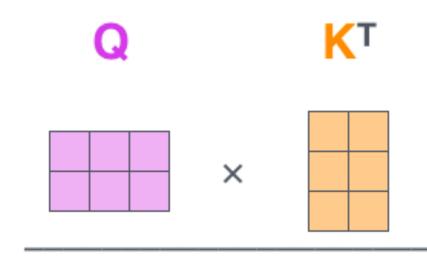
مهر Are W_k and W_q identical?



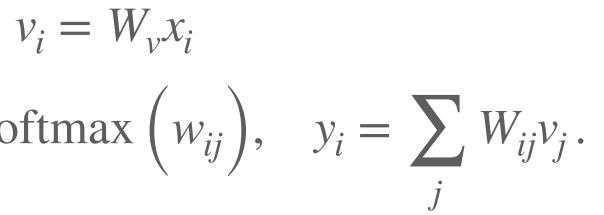


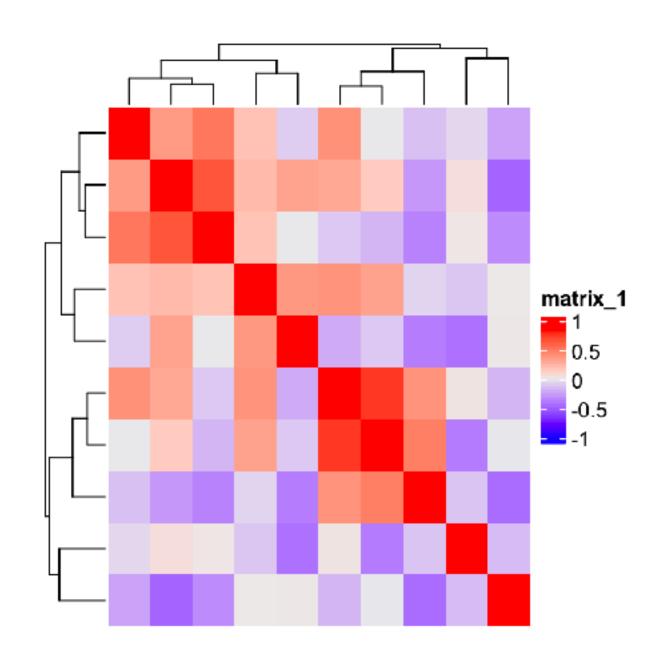
Are W_k and W_q identical? Better not to be identical!

$$q_i = W_q x_i, \quad k_i = W_k x_i, \quad v$$
$$w_{ij} = q_i^T k_j / \sqrt{d}, \quad W_{ij} = \text{sof}$$

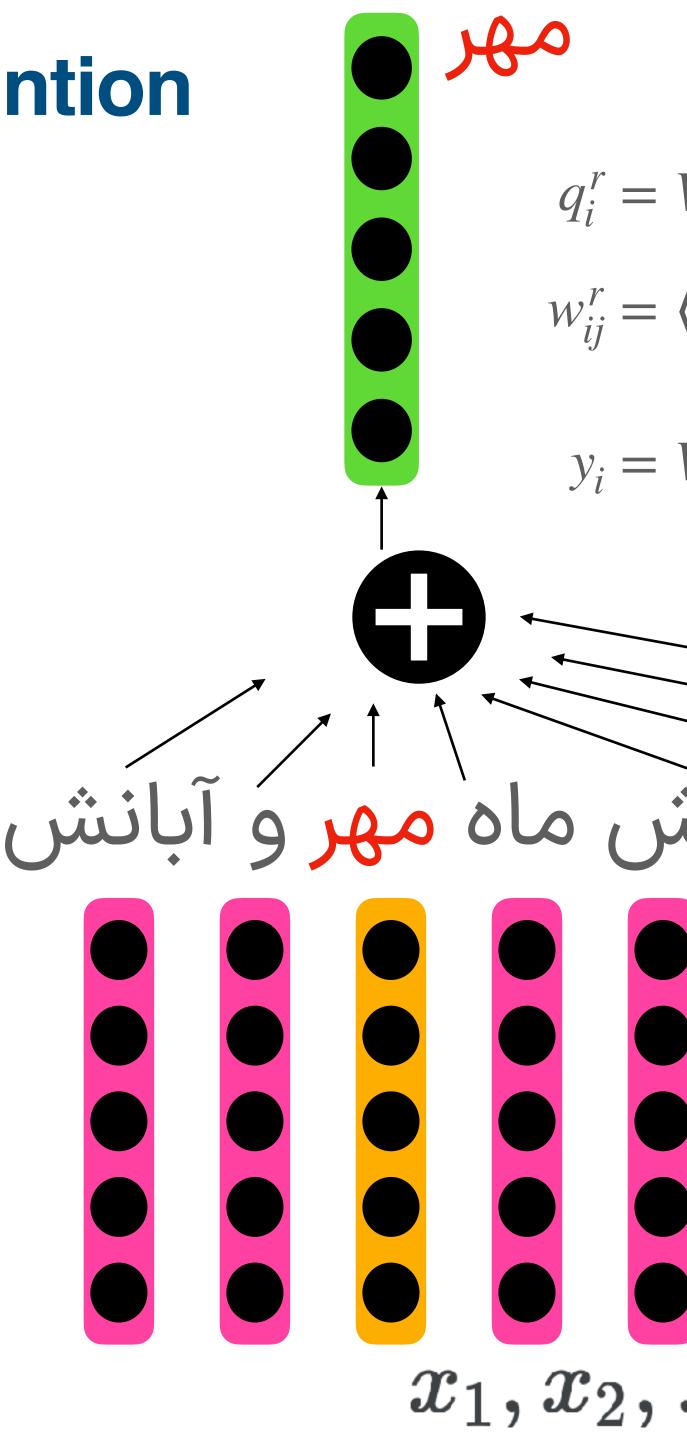


/	7
	d_k





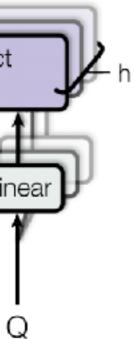
Multihead Attention

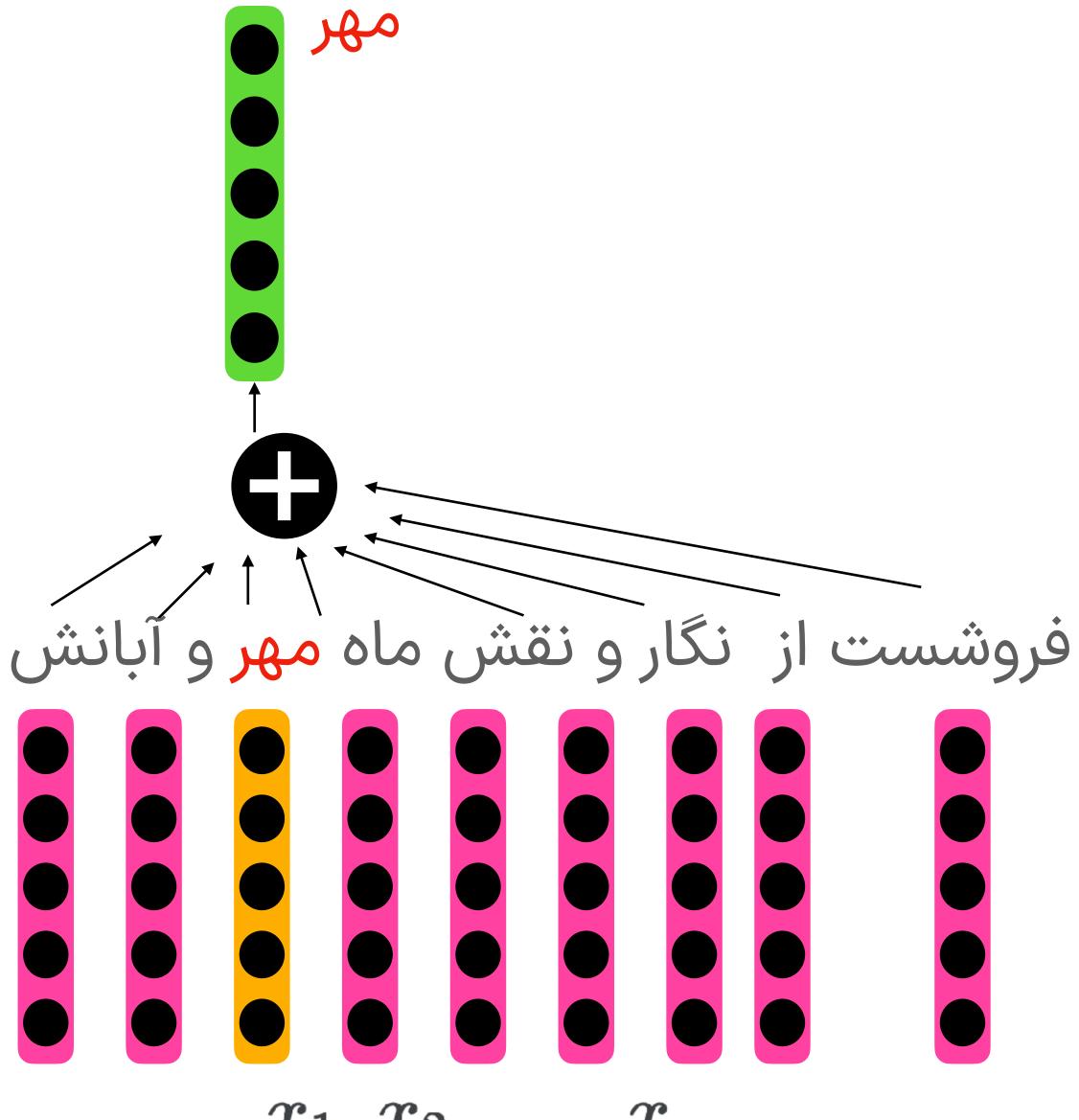


$$= W_{q}^{r}x_{i}, \quad k_{i}^{r} = W_{k}^{r}x_{i}, \quad v_{i}^{r} = W_{v}^{r}x_{i}$$

$$= \langle q_{i}^{r}, k_{j}^{r} \rangle / \sqrt{d}, \quad W_{ij}^{r} = \operatorname{softmax} \left(w_{ij}^{r} \right), \quad y_{i}^{r} = \sum_{j} W_{ij}^{r}$$

$$= W_{v} \operatorname{concat} \left[y_{i}^{1}, y_{i}^{2}, \ldots \right].$$
Scaled Dot-Produce Attention
$$\underbrace{\operatorname{scaled Dot-Produce Attention}}_{\bigvee \quad k}$$





 x_1, x_2, \ldots, x_n

Positional Embedding

* Assign a number to each time-step within the [0, 1]

* Assign a natural number to each time-step

- * Long sentences
- * Differences in the training and the inference

* Time-step differences are not consistent in different sentences.

Positional Embedding

 \mathbf{X} Unique encoding for each time-step.

Consistent distance between time-steps in varying sentence lengths.

Easily adapts to longer sentences with bounded values.

Deterministic output.

Positional Embedding types?

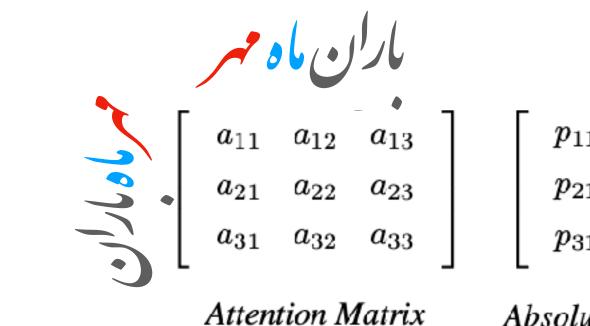
ABSOLUTE VS. RELATIVE POSITION ENCODING

مرماه باران می بارد

معمولاهرسال مهرماه باران می ارد

Positional Embedding types?

ABSOLUTE VS. RELATIVE POSITION ENCODING



Absolute position embeddings are favorable for classification tasks and relative embeddings perform better for span prediction tasks.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. 2022. Position Information in Transformers: An Overview. Computational Linguistics, 48(3):733–763.

مرماه ماران می مارد

معمولاهرسال مرماه باران می ارد

p_{11}	p_{12}	p_{13}]	r_0	r_1	r_2
p_{21}	p_{22}	p_{23}		r_{-1}	r_0	r_1
p_{31}	p_{32}	p_{33}		r_{-2}	r_{-1}	r_0

Absolute Position Bias Relative Position Bias

Adding Position Embeddings

Input Embedding $U \in \mathbb{R}^{ imes d}$

 $ilde{\mathbf{A}} = \mathbf{1}$ $ilde{\mathbf{M}} = \mathbf{S}$ $\tilde{\mathbf{O}} = \mathbf{L}$ $\mathbf{\tilde{F}} = \mathbf{R}$ $ilde{\mathbf{Z}} = \mathbf{L}$

- Position Embedding $P \in \mathbb{R}^{ imes d}$

$$\begin{split} &\sqrt{\frac{1}{d}} (\mathbf{U} + \mathbf{P}) \mathbf{W}^{(q)} \mathbf{W}^{(k) \mathsf{T}} (\mathbf{U} + \mathbf{P})^{\mathsf{T}} \\ &\text{softMax}(\tilde{\mathbf{A}}) (\mathbf{U} + \mathbf{P}) \mathbf{W}^{(v)} \\ &\text{softMax}(\tilde{\mathbf{A}}) (\mathbf{U} + \mathbf{P}) \mathbf{W}^{(v)} \\ &\text{sayerNorm}_2 (\tilde{\mathbf{M}} + \mathbf{U} + \mathbf{P}) \\ &\text{seLU}(\tilde{\mathbf{O}} \mathbf{W}^{(f_1)} + \mathbf{b}^{(f_1)}) \mathbf{W}^{(f_2)} + \mathbf{b}^{(f_2)} \\ &\text{sayerNorm}_1 (\tilde{\mathbf{O}} + \tilde{\mathbf{F}}) \end{split}$$

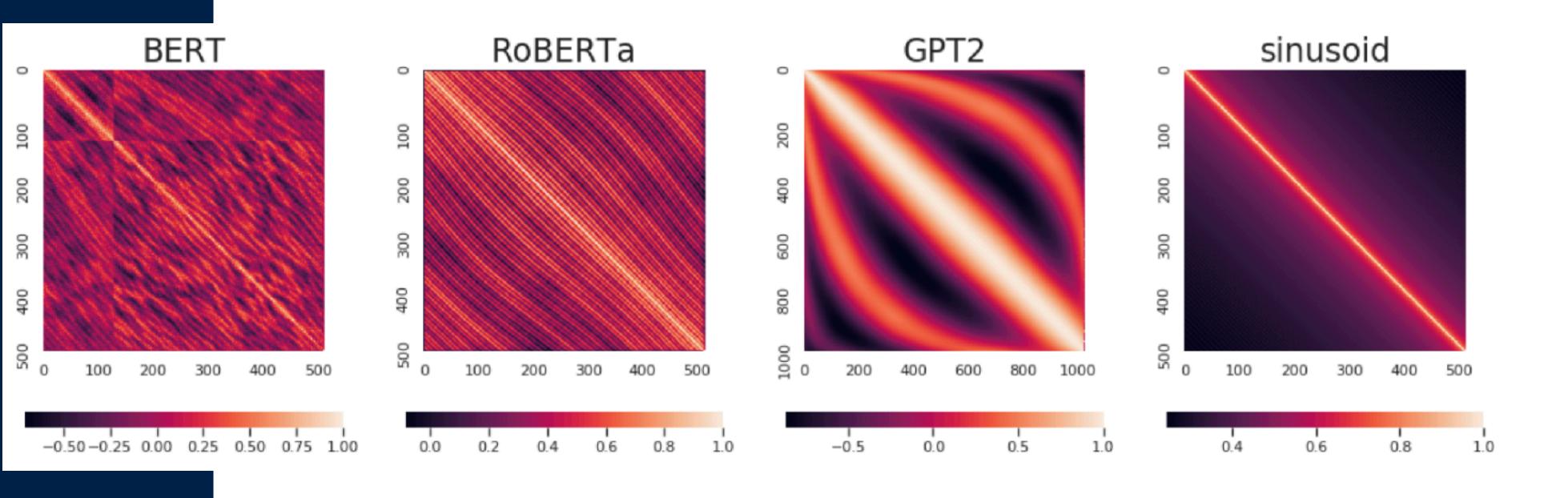
Modifying Attention Matrix

Input Embedding $U \in \mathbb{R}^{ imes d}$ Position Embedding $P \in \mathbb{R}^{ imes d}$

 $\hat{\mathbf{A}} \sim \underbrace{\mathbf{U}\mathbf{W}^{(q)}\mathbf{W}^{(k)}\mathbf{U}^{\dagger}\mathbf{U}^{\dagger}}_{\mathbf{V}} + \underbrace{\mathbf{P}\mathbf{W}^{(q)}\mathbf{W}^{(k)}\mathbf{U}^{\dagger}\mathbf{U}^{\dagger} + \mathbf{U}\mathbf{W}^{(q)}\mathbf{W}^{(k)}\mathbf{P}^{\dagger}\mathbf{P}^{\dagger}}_{\mathbf{V}} + \underbrace{\mathbf{P}\mathbf{W}^{(q)}\mathbf{W}^{(k)}\mathbf{P}^{\dagger}\mathbf{P}^{\dagger}}_{\mathbf{V}}$ $\mathrm{unit} ext{-unit}\sim \mathbf{A}$ unit-position

position-position

Positional Embedding types?

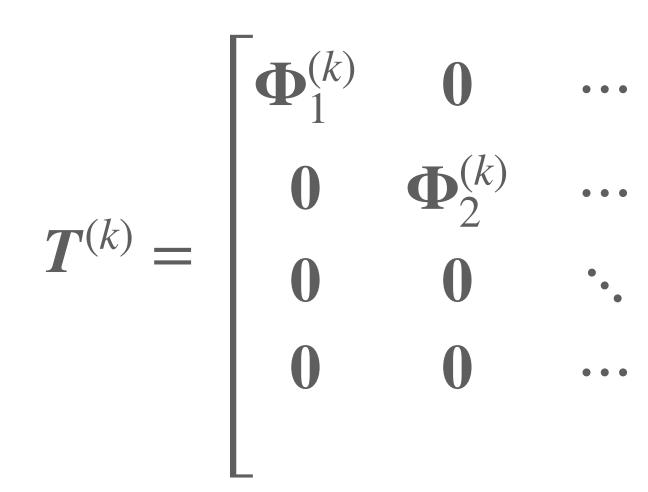


Association for Computational Linguistics.

Yu-An Wang and Yun-Nung Chen. 2020. What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6840–6849, Online.

Sinusoidal Positional Embedding

We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of PEpos.



Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

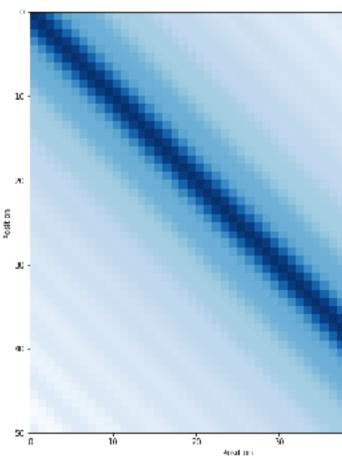
$$T^{(k)}E_{t,:} = E_{t+k,:}$$

$$\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\$$

Sinusoidal Positional Embedding

We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of PEpos.

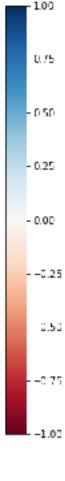
$$\overrightarrow{p}_{t}^{(i)} = f(t)^{(i)} := \begin{cases} \sin(\omega_{k}, t), \text{ if } i = 2k \\ \cos(\omega_{k}, t), \text{ if } i = 2k + 1 \end{cases} \qquad \omega_{k} = \frac{1}{10000^{2k/d}}$$



Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

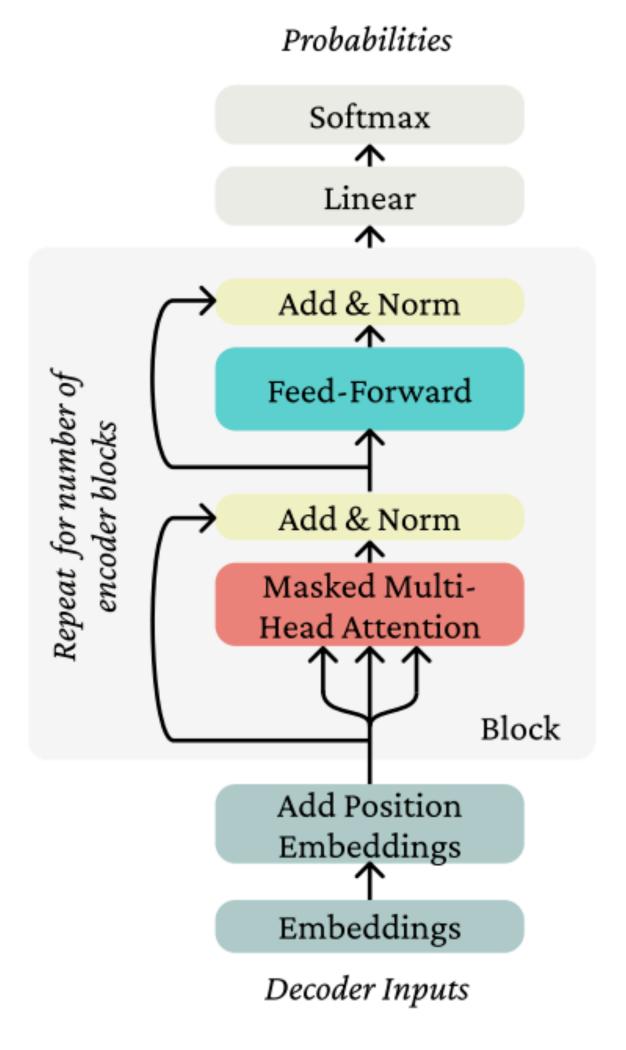
$$\begin{bmatrix}
 \sin(\omega_1 \cdot t) \\
 \cos(\omega_1 \cdot t) \\
 \sin(\omega_2 \cdot t) \\
 \cos(\omega_2 \cdot t) \\
 \vdots \\
 \sin(\omega_{d/2} \cdot t) \\
 \cos(\omega_{d/2} \cdot t) \\
 d \times 1
 \end{bmatrix}$$

 $\overrightarrow{p_t} =$



Transformer block

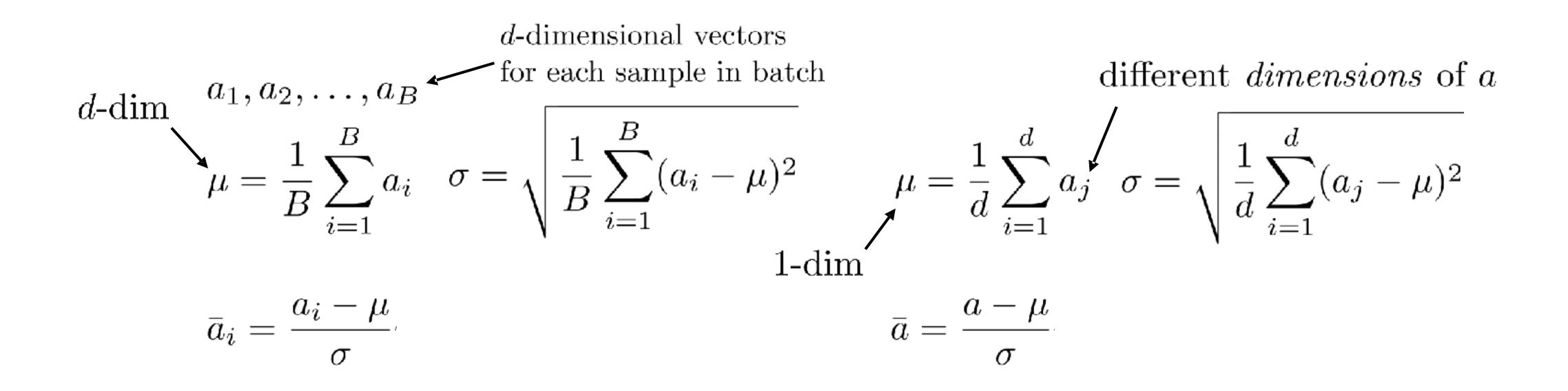
- Each block has two "sublayers"
 1. Multihead attention
 2. Feed-forward NNet (with ReLU)
- Residual: x + Sublayer(x)
- Layernorm changes input
 to have mean 0 and variance 1



Layer normalization

lengths

- Resulting more stable input to the next layer
- batch Batch norm Layer norm



Main idea: batch normalization is very helpful, but hard with sequences of different

- Simple solution: "layer normalization" – like batch norm, but not across the

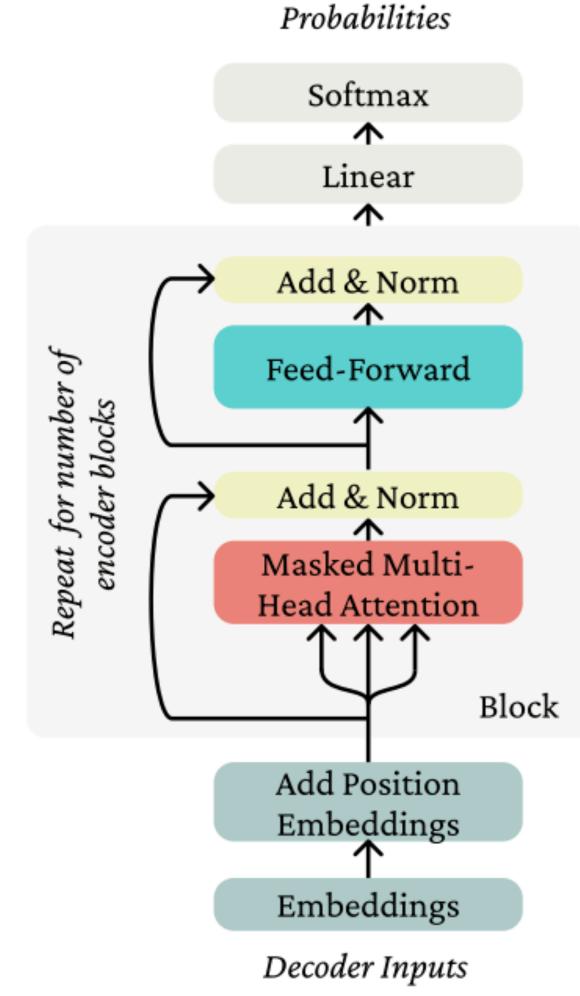
Why transformers?

Pros:

- + Much easier to parallelize
- + Much better long-range connections
- + In practice, can make it much deeper (more layers) than RNN

Cons:

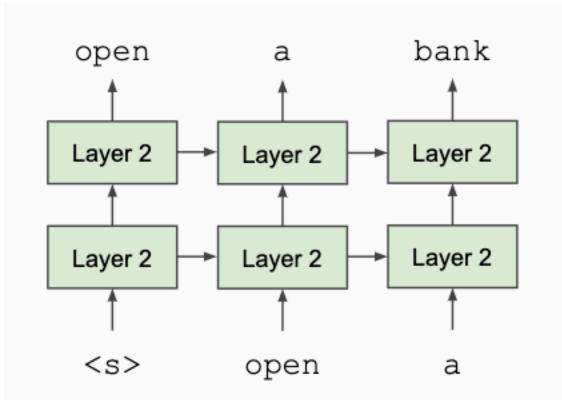
- Attention computations are technically O(n²)
- Somewhat more complex to implement (positional encodings, etc.)



-Encoder Language Model - BERT LM Architecture

Masked Language Modeling (MLM)

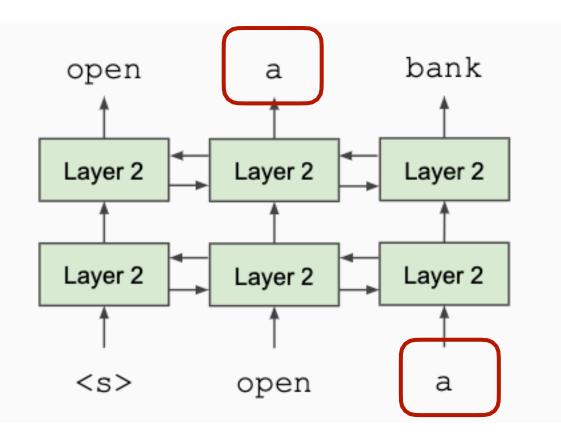
• Q: Why we can't do language modeling with bidirectional models?



• Solution: Mask out k% of the input words, and then predict the masked words

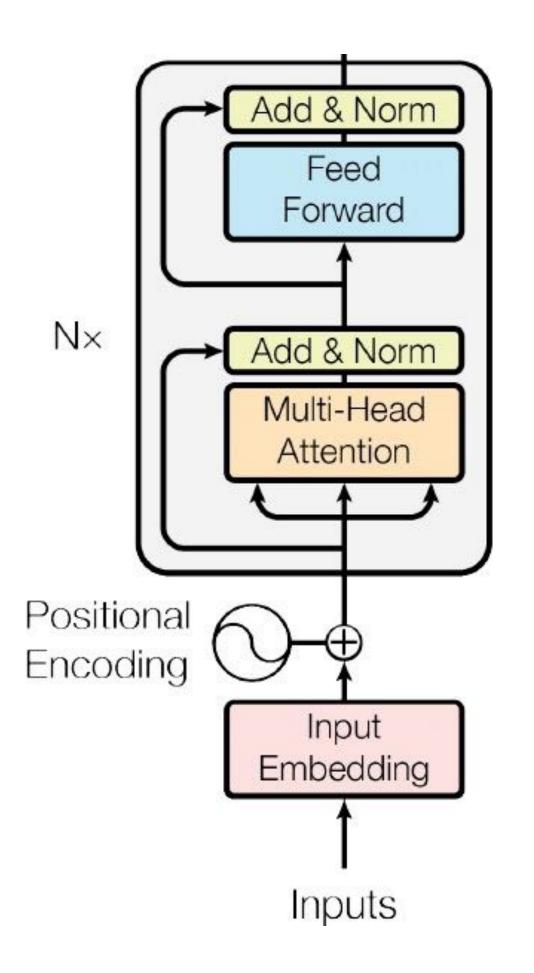
store

the man went to [MASK



53

BERT pre-training: putting together



- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters
- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
- Max sequence size: 512 word pieces (roughly 256 and 256 for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k

54

Sentence-level tasks

- Sentence pair classification tasks:
- Premise: A soccer game with multiple males playing. MNLI {<u>entailment</u>, contradiction, neutral} Hypothesis: Some men are playing a sport. Q1: Where can I learn to invest in stocks? Q2: How can I learn more about stocks? QQP {<u>duplicate</u>, not duplicate}
- Single sentence classification tasks:
- SST2 rich veins of funny stuff in this movie

{<u>positive</u>, negative}

Token-level tasks

• Extractive question answering e.g., SQuAD (Rajpurkar et al., 2016)

SQuAD

Question: The New York Giants and the New York Jets play at which stadium in NYC ? Context: The city is represented in the National Football League by the New York Giants and the New York Jets , although both teams play their home games at MetLife Stadium in nearby East Rutherford , New Jersey , which hosted Super Bowl XLVIII in 2014 . (Training example 29,883)

- Named entity recognition (Tjong Kim Sang and De Meulder, 2003)
 - Smith lives in New York John

CoNLL 2003 NER

B-PER I-PER O O B-LOC I-LOC

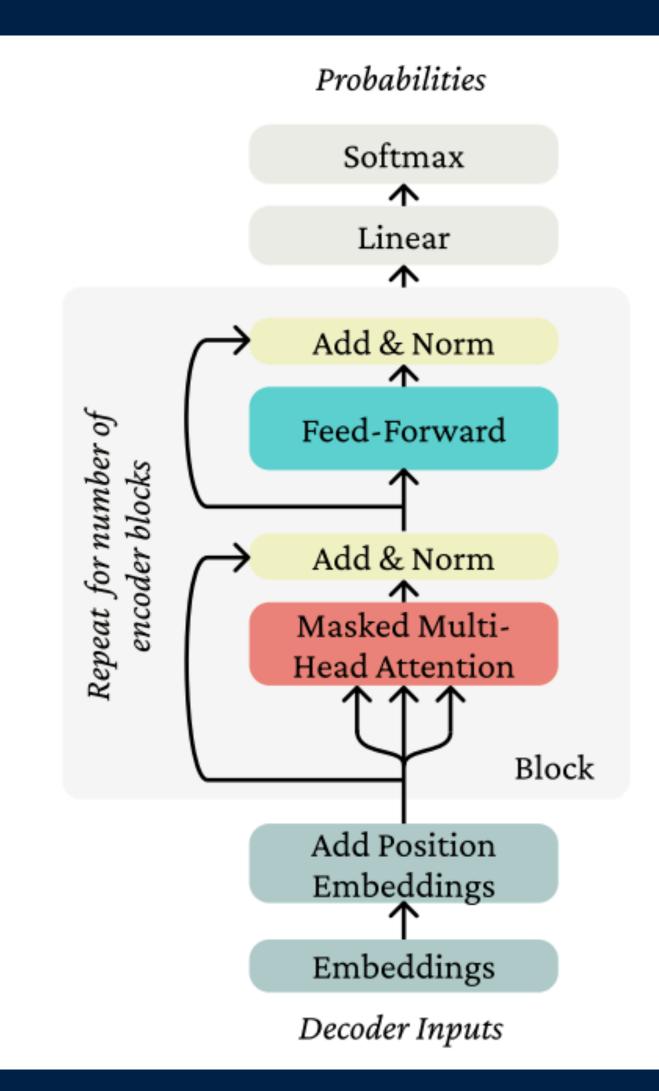
MetLife Stadium

Large Language models

Artificial Intelligence Group Computer Engineering Department, SUT

Lecture 4 - Transformers (iii)

-Transformer Block



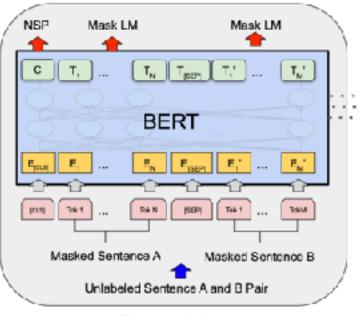
-Encoder Language Model

Encoder LM

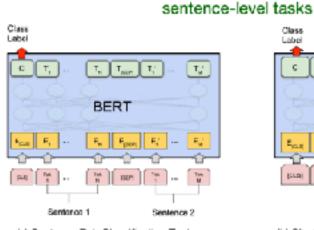
- BERT
- Variations

Encoder Language Model

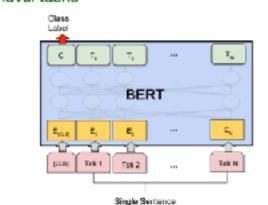
 $P(x) = \prod_{i=1}^{n} P(x_i \mid x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ i=1



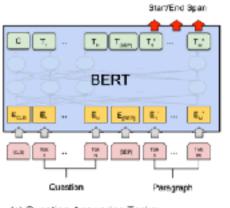
Pre-training



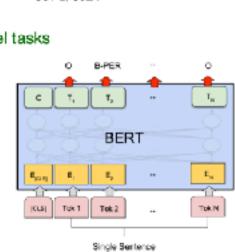
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



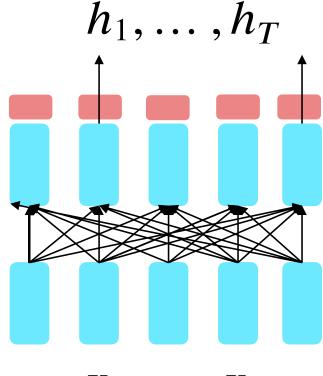
token-level tasks



(c) Question Answering Tasks: SQuAD v1.1



(c) Single Sentence Tagging Tasks: CoNLL-2003 NER



 $h_1, \ldots, h_t = \text{Decoder}(\mathbf{x}_1, \ldots, \mathbf{x}_t)$ $x_{mask} \sim Ah_{masked} + b$

- It is a **fine-tuning approach** based on a deep **Transformer encoder**
- The key: learn representations based on **<u>bidirectional context</u>**

understand the meaning of words.

- **Pre-training objectives:** masked language modeling + next sentence prediction
- State-of-the-art performance on a large set of **sentence-level** and **token-level** tasks

BERT: key contributions

- Why? Because both left and right contexts are important to
 - Example #1: we went to the river <u>bank</u>.
 - Example #2: I need to go to <u>bank</u> to make a deposit.

61

MLM:masking rate and strategy

- Q: What is the value of k?
 - They always use k = 15%.

 - Too little masking: computationally expensive (we need to increase # of epochs) • Too much masking: not enough context
 - See (Wettig et al., 2022) for more discussion of masking rates
- Q: How are masked tokens selected?
 - 15% tokens are uniformly sampled
 - Is it optimal? See span masking (Joshi et al., 2020) and PMI masking (Levine et al., 2021)

Example: He [MASK] from Kuala [MASK], Malaysia.

Next Sentence Prediction (NSP)

- Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, QA)
- NSP is designed to reduce the gap between pre-training and fine-tuning

[CLS]: a special token always at the beginning Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP] Label = NotNext

[SEP]: a special token used to separate two segments

> They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

63

BERT Training

Dataset. Let \mathcal{D} be a set of examples $(x_{1:L}, c)$ constructed as follows:

- Let A be a sentence from the corpus. •
- With probability 0.5, let *B* be the next sentence. •
- With probability 0.5, let *B* be a random sentence from the corpus. •
- Let $x_{1:L} = [[CLS], A, [SEP], B].$ •
- Let c denote whether B is the next sentence or not. •

Objective. Then the BERT objective is:

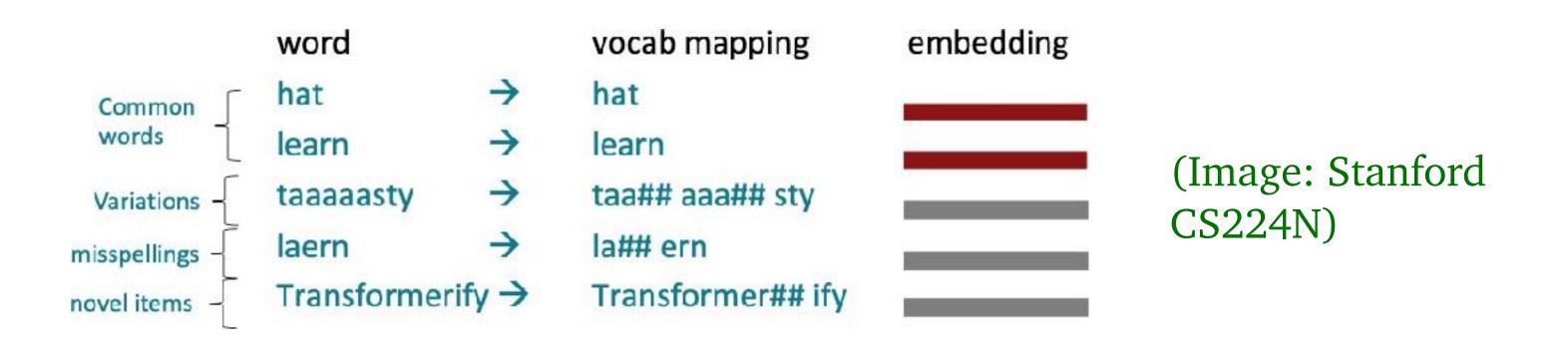
$$\mathcal{O}(\theta) = \sum_{(x_{1:L},c)\in\mathcal{D}} \mathbb{E}_{I,\tilde{x}_{1:L}\sim A(\cdot|x_{1:L},I)} \left[\sum_{i\in I} -\log p_{\theta}(\tilde{x}_i \mid x_{1:L}) \right] + \underbrace{-\log p(c \mid \phi(x_{1:L})_1)}_{\text{next sentence prediction}} + \underbrace{-\log p(c \mid \phi(x_{1:L})_1)}_{\text{next sentence prediction}} \right]$$

masked language modeling

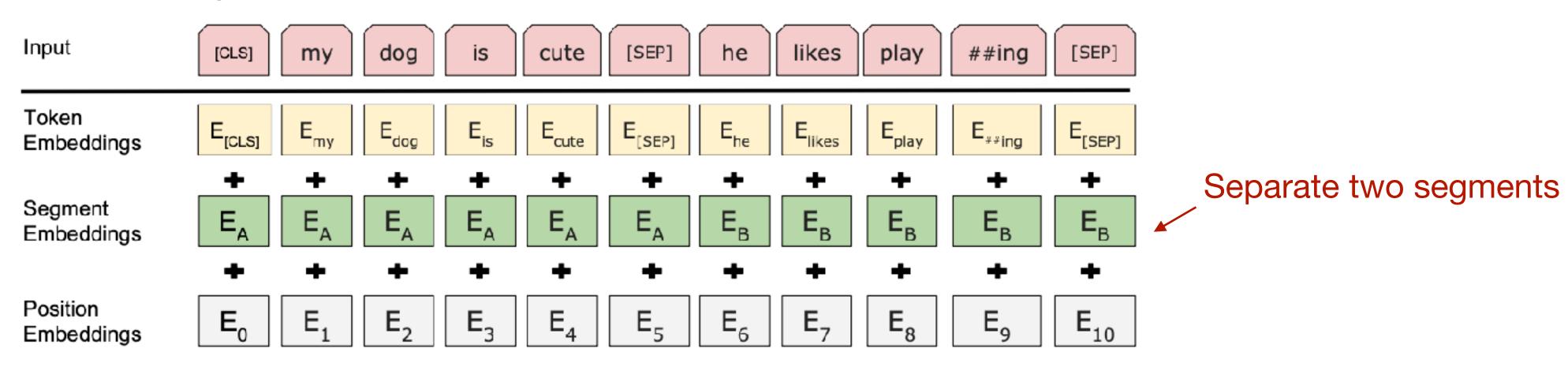
64

BERT pre-training: putting together

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)



Input embeddings:



- Just two possible "segment embeddings": EA and EB.

- Positional embeddings are learned vectors for every possible position between 0 and 512-1.

65

Byte Pair Encoding (BPE)

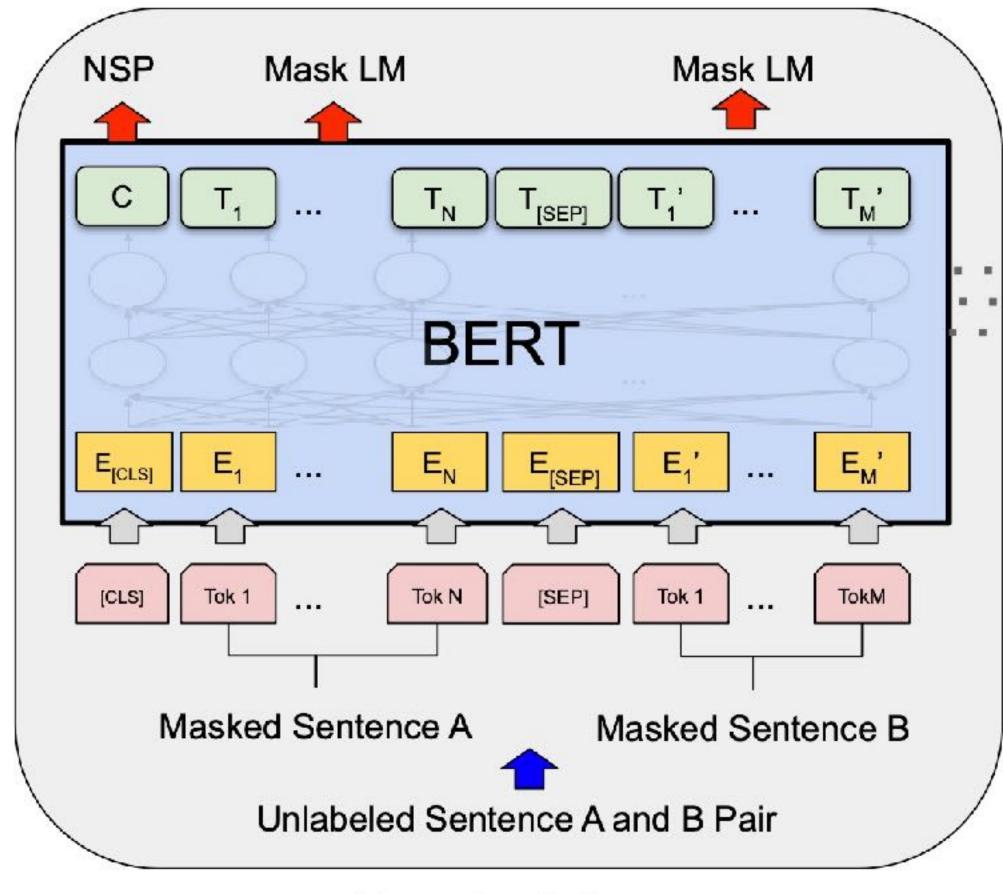
- Step 0: Set up vocabulary.
- Step 1: Represent words using characters + end token </w>.
- Step 2: Count character pairs in vocabulary.
- Step 3: Merge highest frequency pairs, add new n-gram.
- Step 4: Continue merging until reaching desired vocab size or merge count.

Unicode: we can run BPE on bytes instead of Unicode characters (Wang et al. 2019).

As we have (144,697) of Unicode characters.

u-n-<u>r-e</u>-l-a-t-e-d u-n re-l-<u>a-t</u>-e-d u-n re-l-at-<u>e-d</u> u-n re-l-at-ed un re-l-<u>at-ed</u> un <u>re-l</u>-ated un <u>rel-ated</u> <u>un-related</u> unrelated

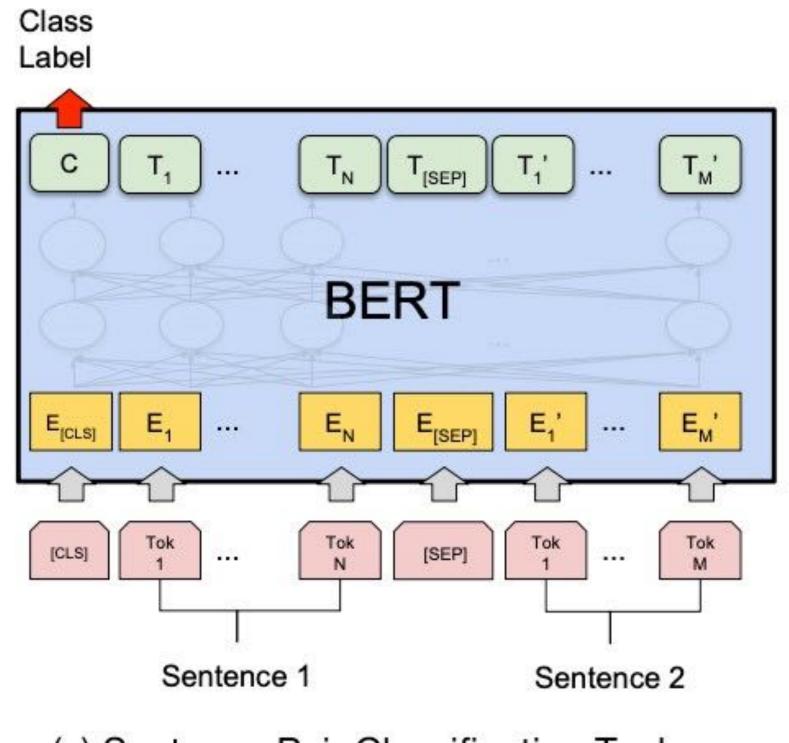
BERT pre-training: putting together



Pre-training

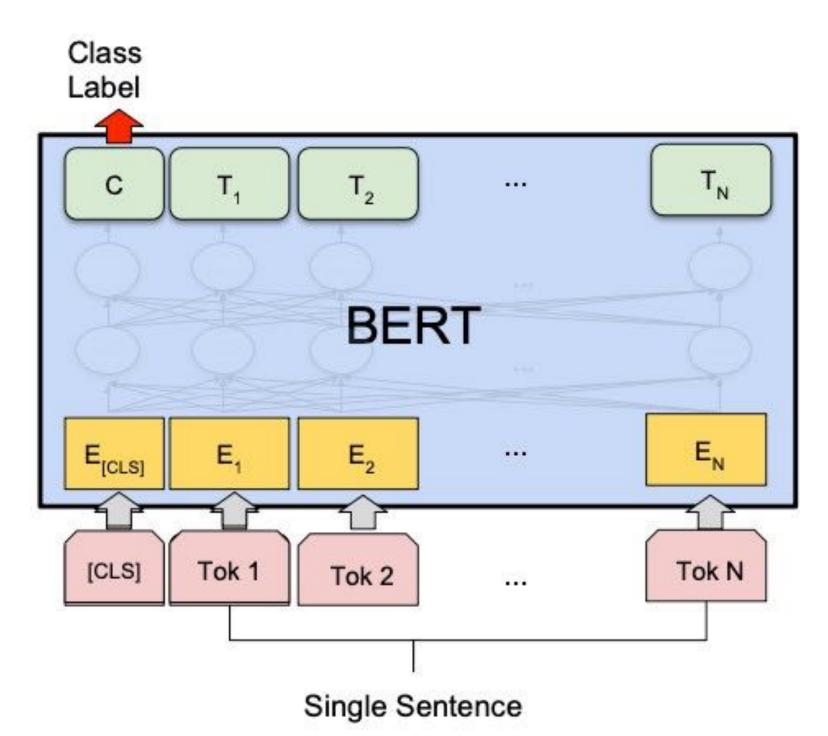
- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

- - sentence-level tasks

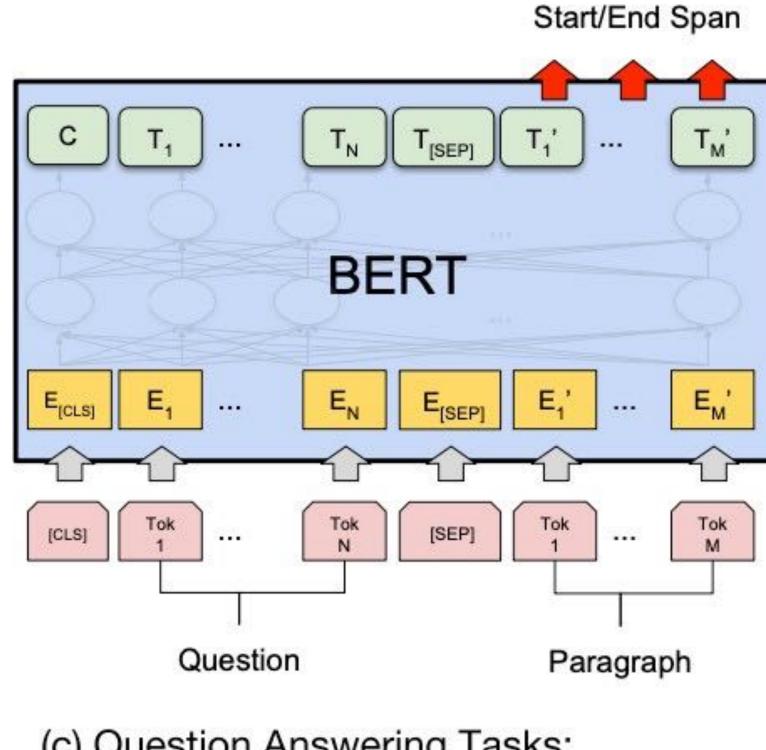


(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

"Pretrain once, finetune many times."



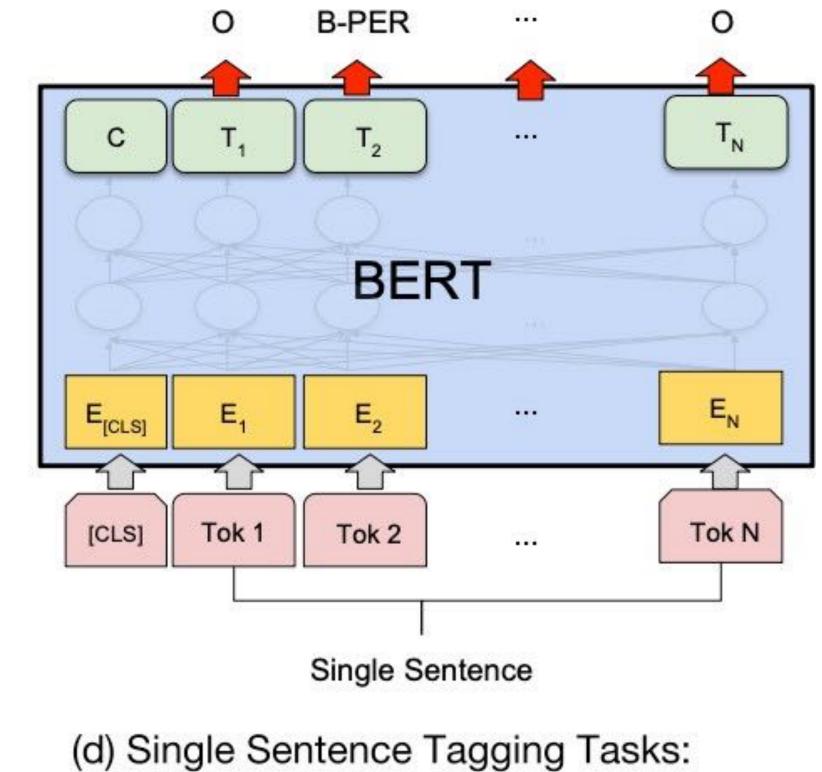
(b) Single Sentence Classification Tasks: SST-2, CoLA



(c) Question Answering Tasks: SQuAD v1.1

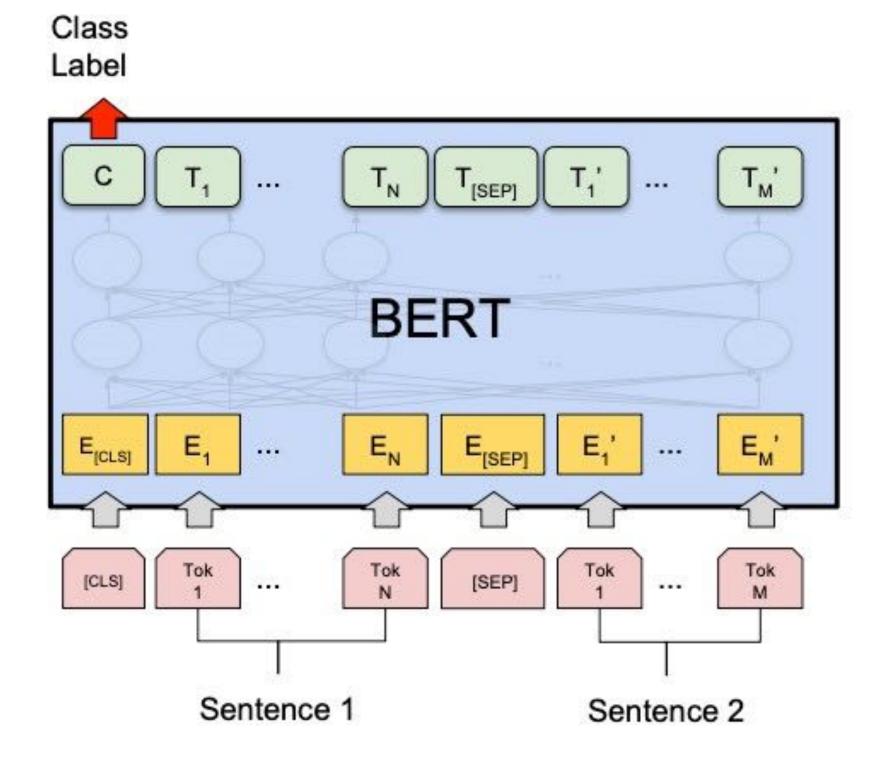
"Pretrain once, finetune many times."

token-level tasks

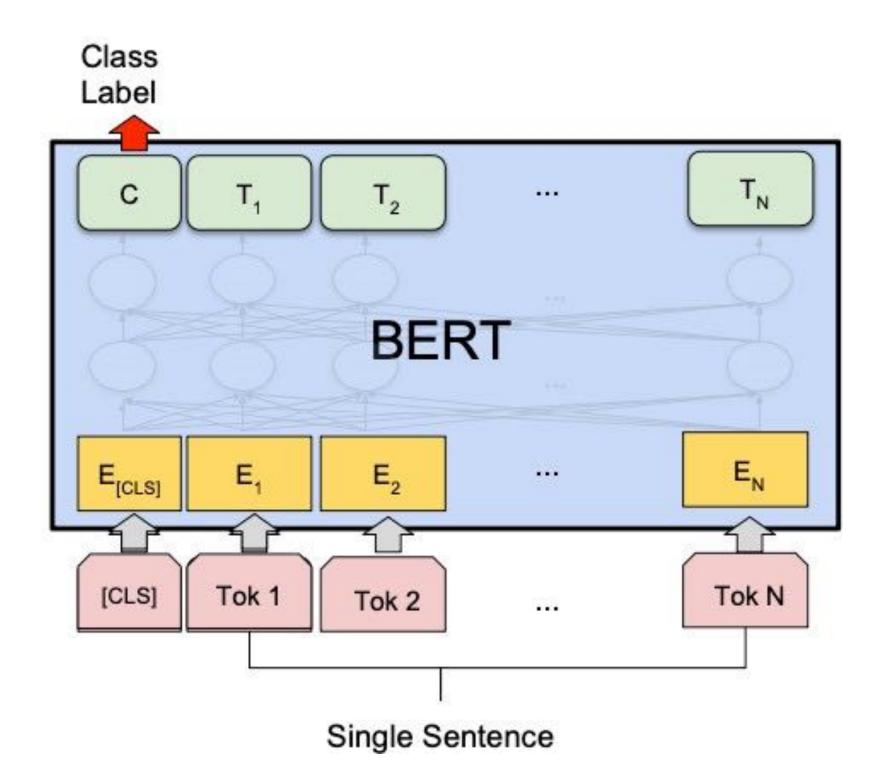


CoNLL-2003 NER

70

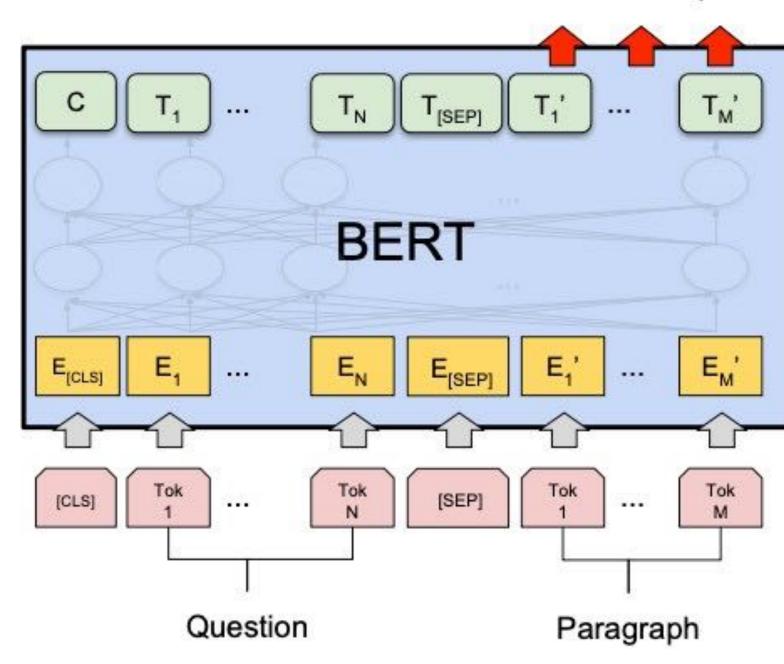


- lacksquare
- Add a linear classifier on top of [CLS] representation

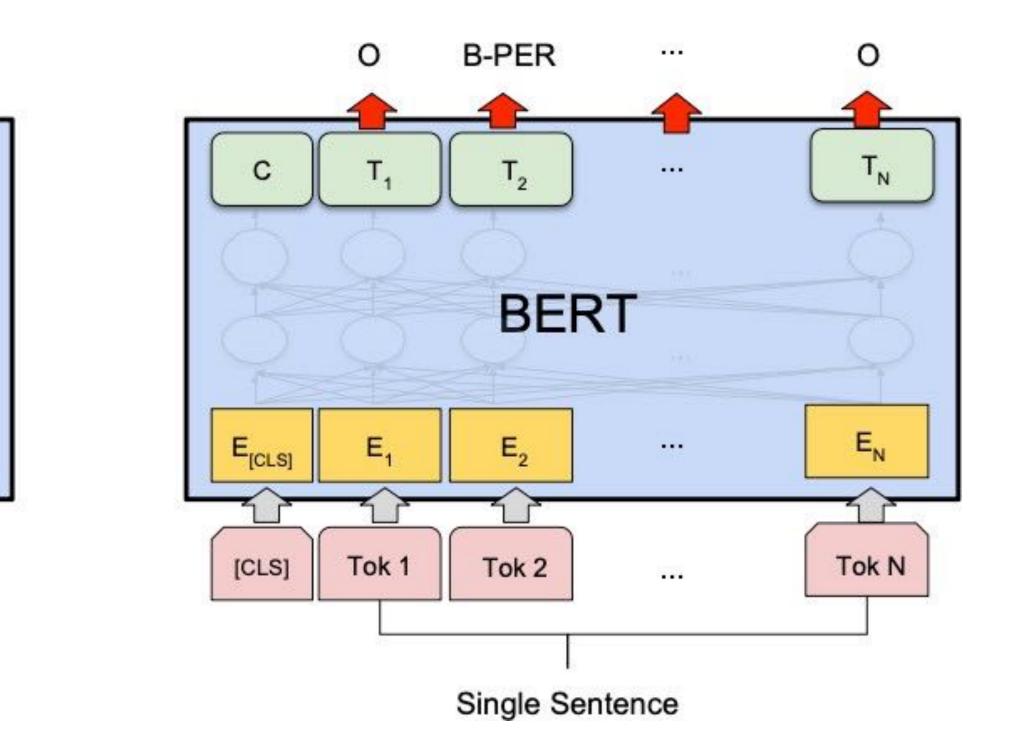


For sentence pair tasks, use [SEP] to separate the two segments with segment embeddings

Start/End Span



 \bullet

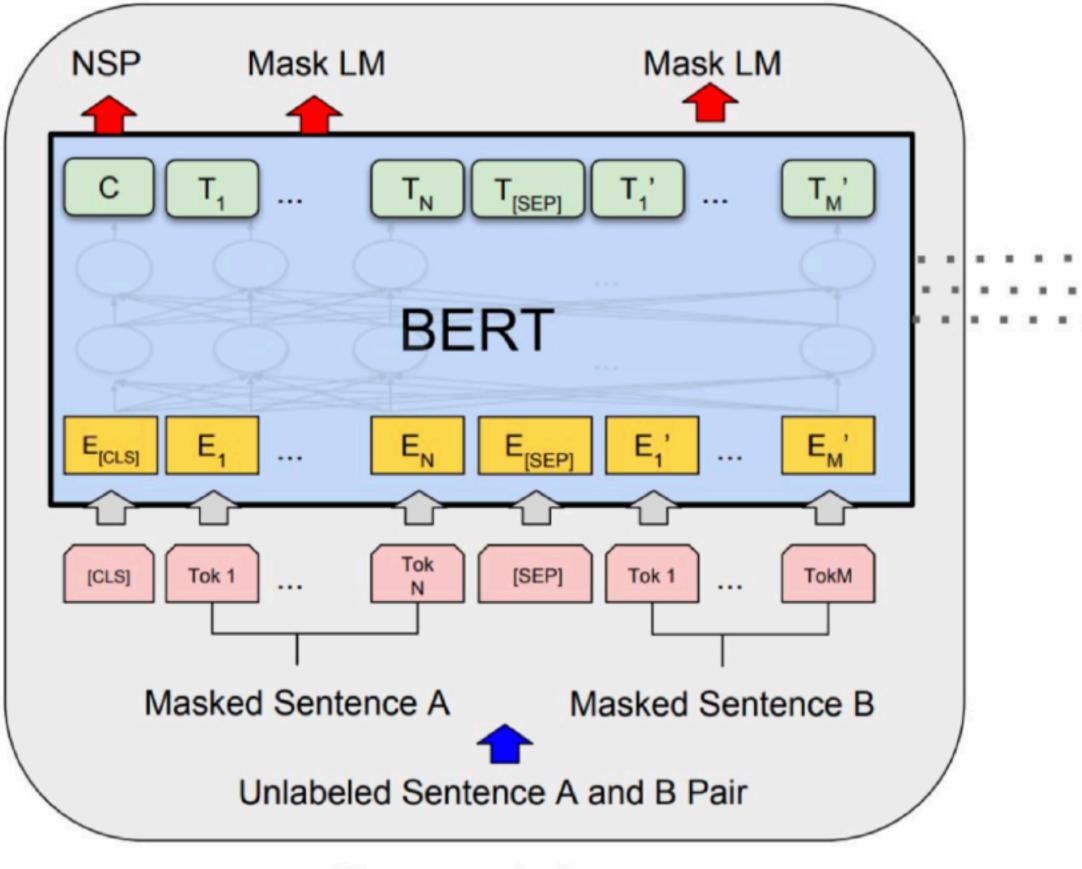


For token-level prediction tasks, add linear classifier on top of hidden representations

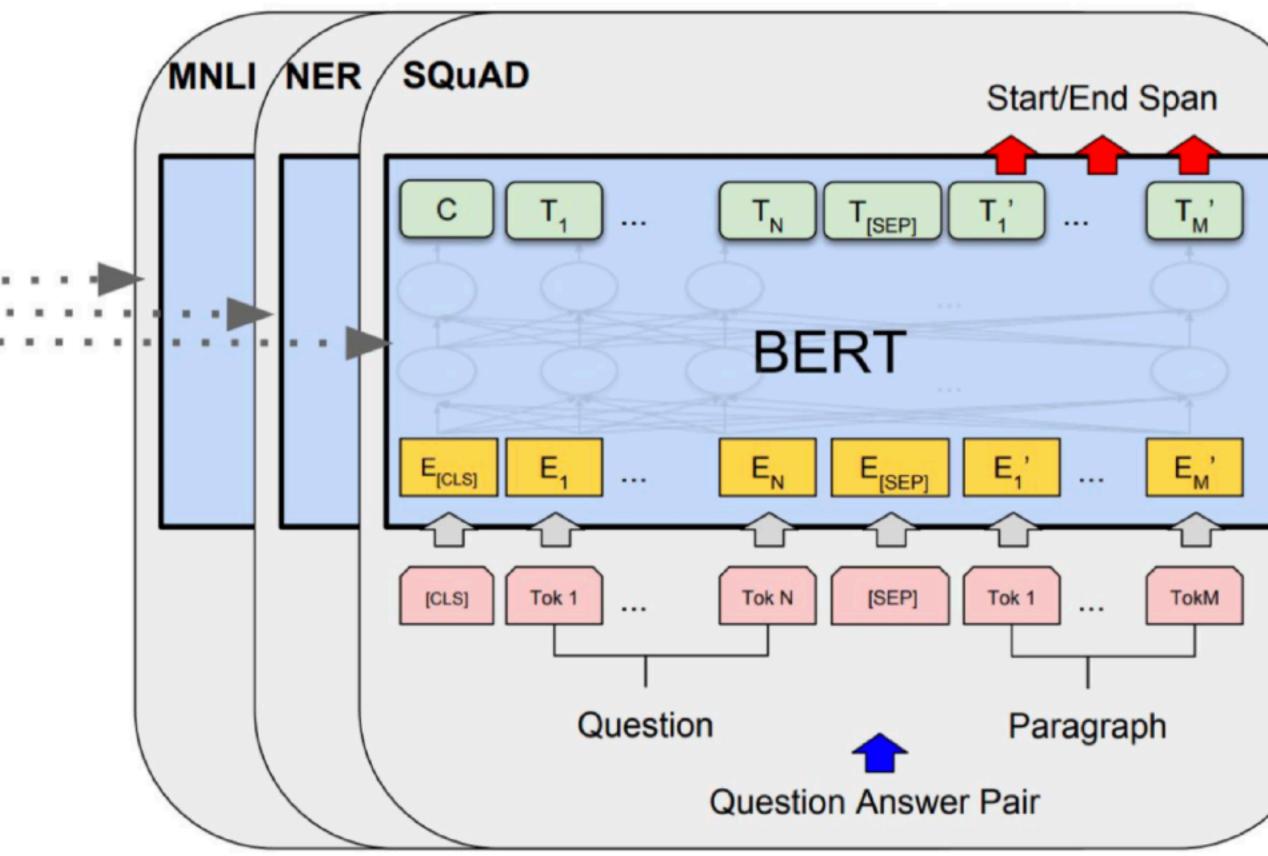
Q: How many new parameters?

72

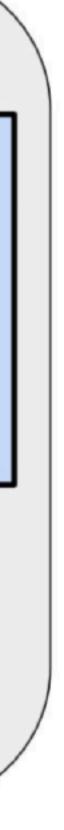
Finetuning Paradigm in NLP



Pre-training



Fine-Tuning



Encoder LM

BERT

Variations

BERT Extensions

- Models that handle long contexts (\gg 512 tokens)
 - Longformer, Big Bird, ...
- Multilingual BERT
- BERT extended to different domains
 - SciBERT, BioBERT, FinBERT, ClinicalBERT, ...
- Making BERT smaller to use • DistillBERT, TinyBERT, ...

• Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary

Encoder LM

BERT

Variations

BERT Extensions

- RoBERTa (Liu et al., 2019)
 - Trained on 10x data & longer, no NSP

 - Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD) • Still one of the most popular models to date
- ALBERT (Lan et al., 2020)
 - Increasing model sizes by sharing model parameters across layers
 - Less storage, much stronger performance but runs slower..

What happened after BERT?

Lots of people are trying to understand what BERT has learned and how it works

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers

Center for Social Data Science University of Copenhagen arogers@sodas.ku.dk

Dept. of Computer Science Dept. of Computer Science University of Massachusetts Lowell University of Massachusetts Lowell okovalev@cs.uml.edu arum@cs.uml.edu

Olga Kovaleva

Anna Rumshisky

Syntactic knowledge, semantic knowledge, world knowledge... How to mask, what to mask, where to mask, alternatives to masking..

76

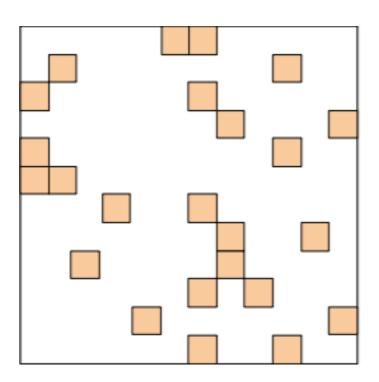
Encoder LM

- BERT
- Variations

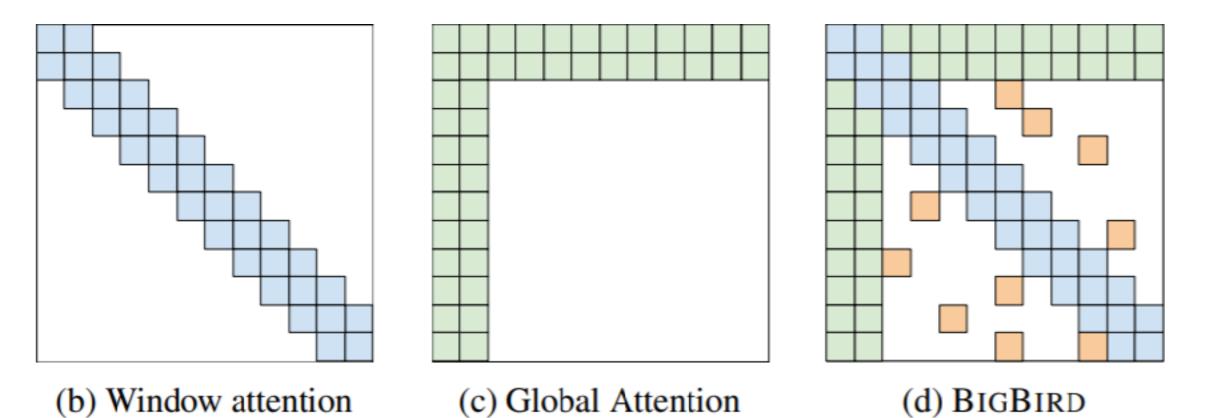
Reducing Attention Cost

BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local windows, looking at everything, and random interactions.



(a) Random attention



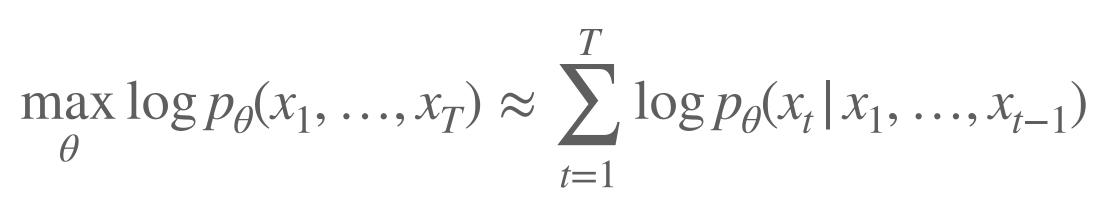
- GPT L M Architecture

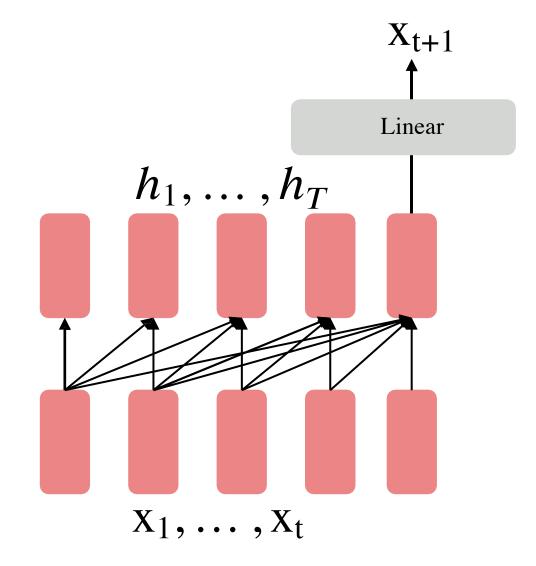
-Decoder Language Model

GPT-models

Decoder Language Model

Autoregressive (AR) models use decoder stacks in generation, aiming to maximize log-likelihood via forward autoregressive factorization:

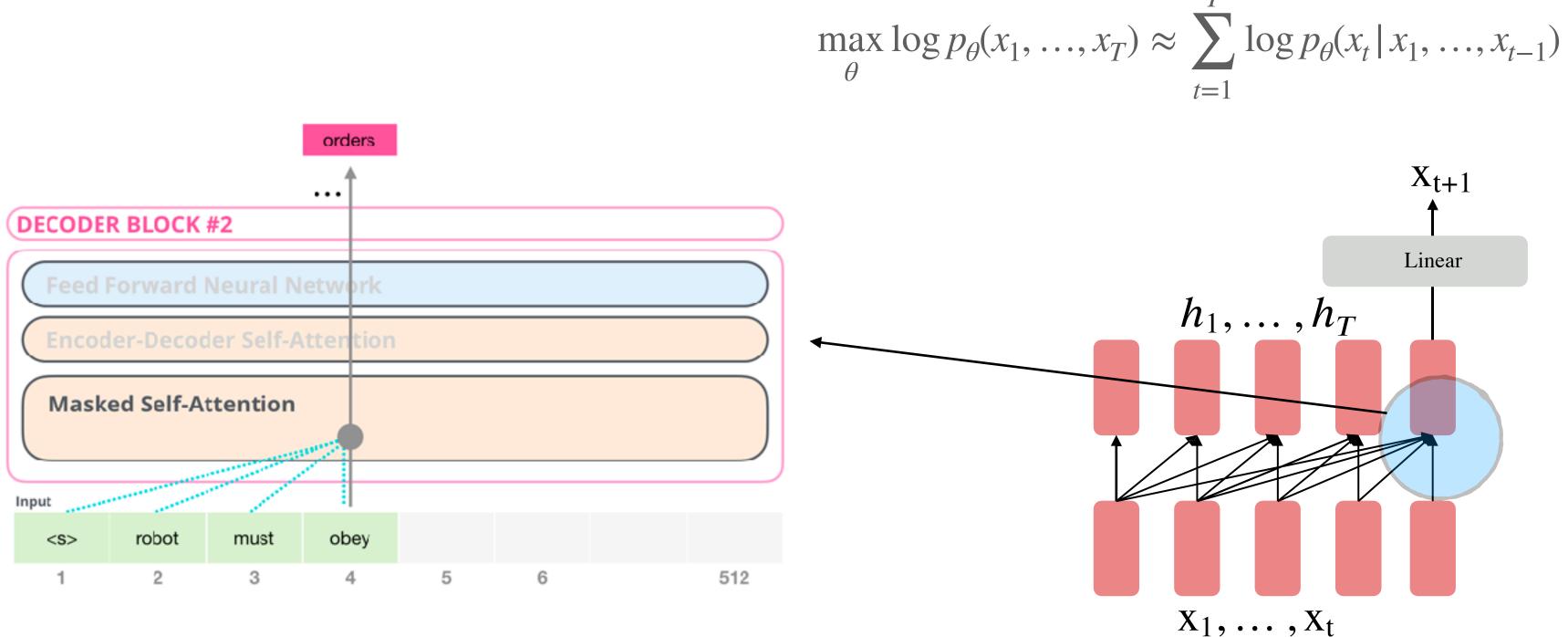




 $h_1, \ldots, h_t = \text{Decoder}(\mathbf{x}_1, \ldots, \mathbf{x}_t)$ $\mathbf{x}_{t+1} \thicksim A\mathbf{h}_t + b$

GPT-models

Decoder Language Model



BERT vs. GPT Masked Self-Attention Self-Attention

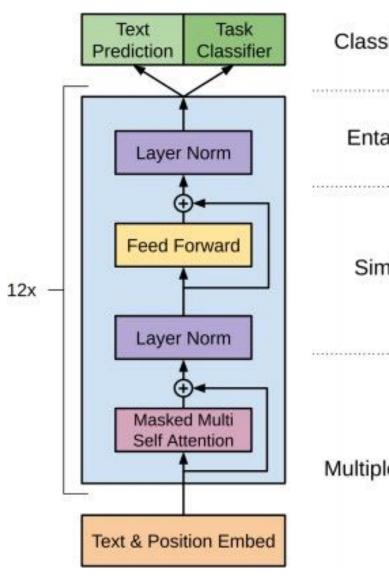
http://jalammar.github.io/illustrated-gpt2/

 $h_1, \ldots, h_t = \text{Decoder}(\mathbf{x}_1, \ldots, \mathbf{x}_t)$ $\mathbf{x}_{t+1} \thicksim A\mathbf{h}_t + b$

GPT-models

Generative Pre-Trained Transformer (GPT)

- Transformer decoder with 12 layers.
- Byte-pair encoding with 40,000 merges
- 0 0 dependencies.



Radford et al., 2018 https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Trained on BooksCorpus: over 7000 unique books.

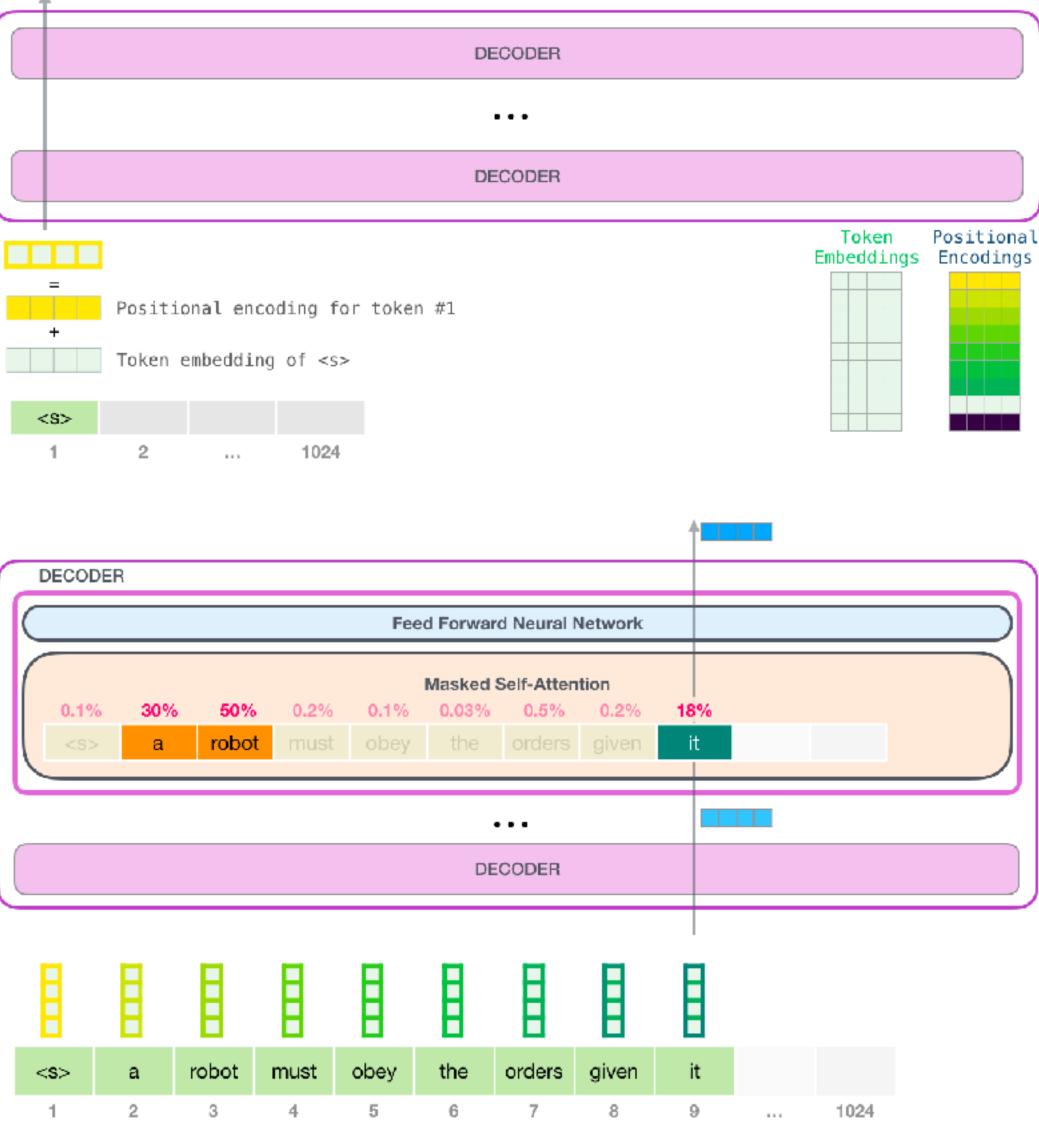
Contains long spans of contiguous text, for learning long-distance

sification	Start	Text	Extract]→ Transforr	ner 🔸 l	Line	ar
tailment [Start	Premise	Delim	Hypothesis	Extract]•[Transformer - Linear
milarity	Start	Text 1	Delim	Text 2	Extract]+[Transformer + Linear
[Start	Text 2	Delim	Text 1	Extract]+[Transformer
[Start	Context	Delim	Answer 1	Extract]+[Transformer + Linear
ble Choice	Start	Context	Delim	Answer 2	Extract]+[Transformer + Linear
[Start	Context	Delim	Answer N	Extract]+[Transformer - Linear

GPT-models

Generative Pre-Trained Transformer (GPT)

 $\langle S \rangle$



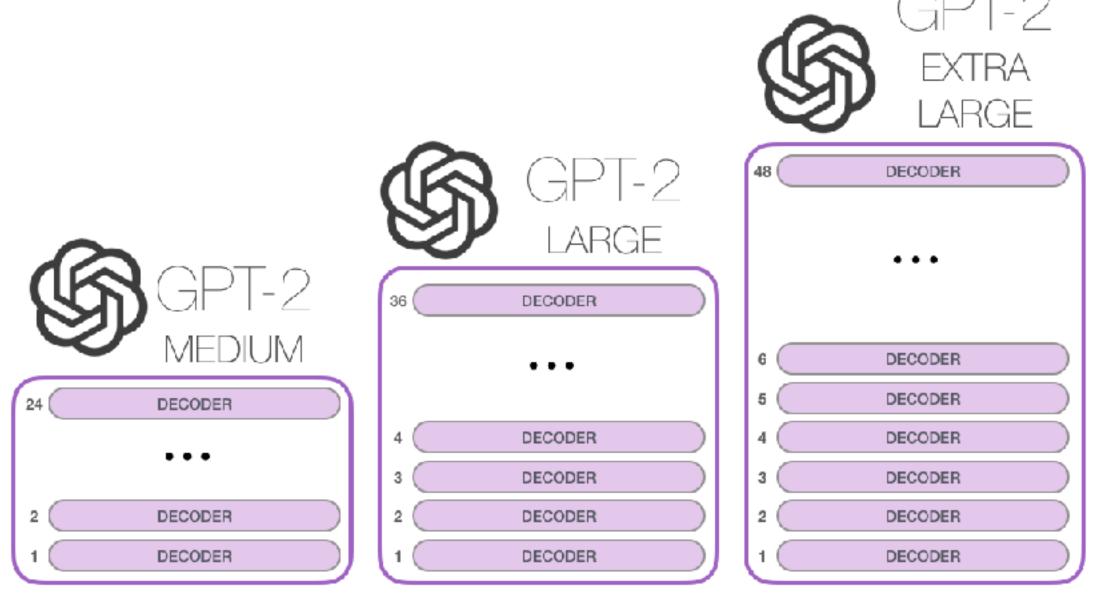
<\$>	а
1	2

GPT-models

GPT released June 2018

Model Dimensionality: 768

GPT-2 released Nov. 2019 with 1.5B parameters GPT-3: 175B parameters trained on 45TB texts



Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

GPT-models

	Model	Data
GPT-2 (Radford	Context size: 1024 tokens	WebText (45 million outbound links from Reddit
et al. 2019)	117M-1.5B parameters	with 3+ karma); 8 million documents (40GB)
GPT-3 (Brown et	Context size: 2048 tokens	Common crawl + WebText + "two internet-based
al. 2020)	125M-175B parameters	books corpora" + Wikipedia (400B tokens, 570GB)

Zero-shot

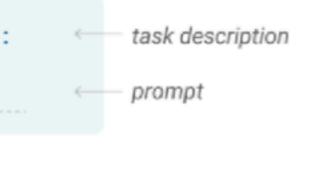
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1	Translate	English	to	French:
2	cheese =>			

One-shot

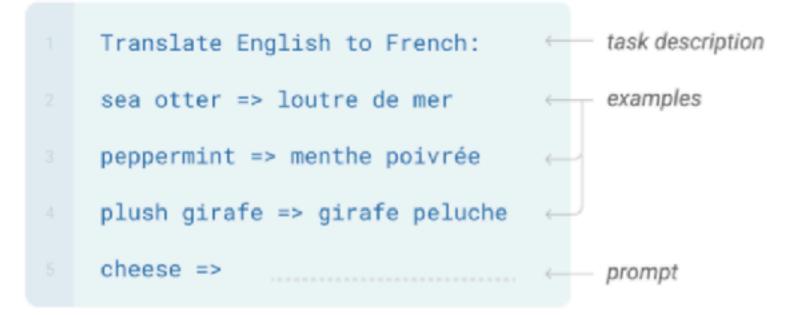
In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

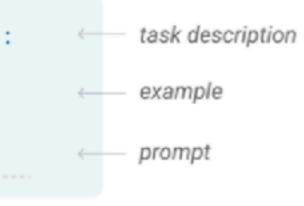
Translate English to French
sea otter => loutre de mer
cheese =>



Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.





Brown et al. (2020, "Language Models are Few-Shot Learners" https://arxiv.org/pdf/2005.14165.pdf

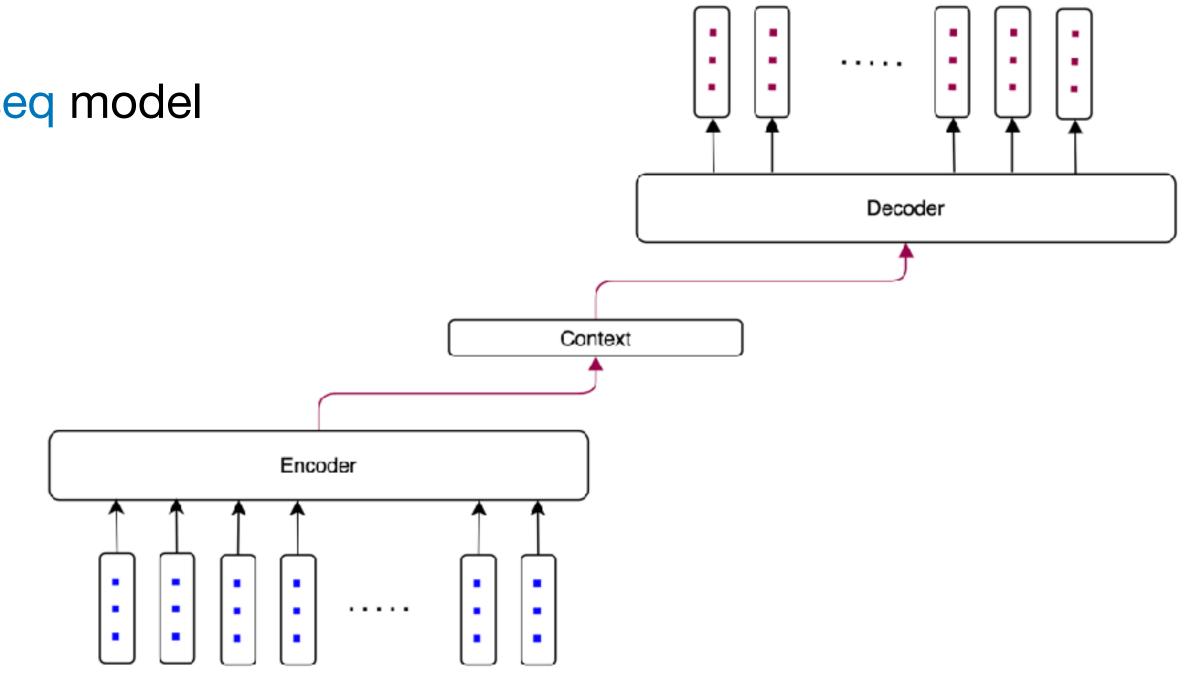
-Enc-Dec Language Model - Attention is all you need, T5, BART

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Basic Idea of encoder-decoder

- The decoder produces task-specific output given the context
 - Output: contextually relevant, variable-length
- Also known as seq-to-seq model

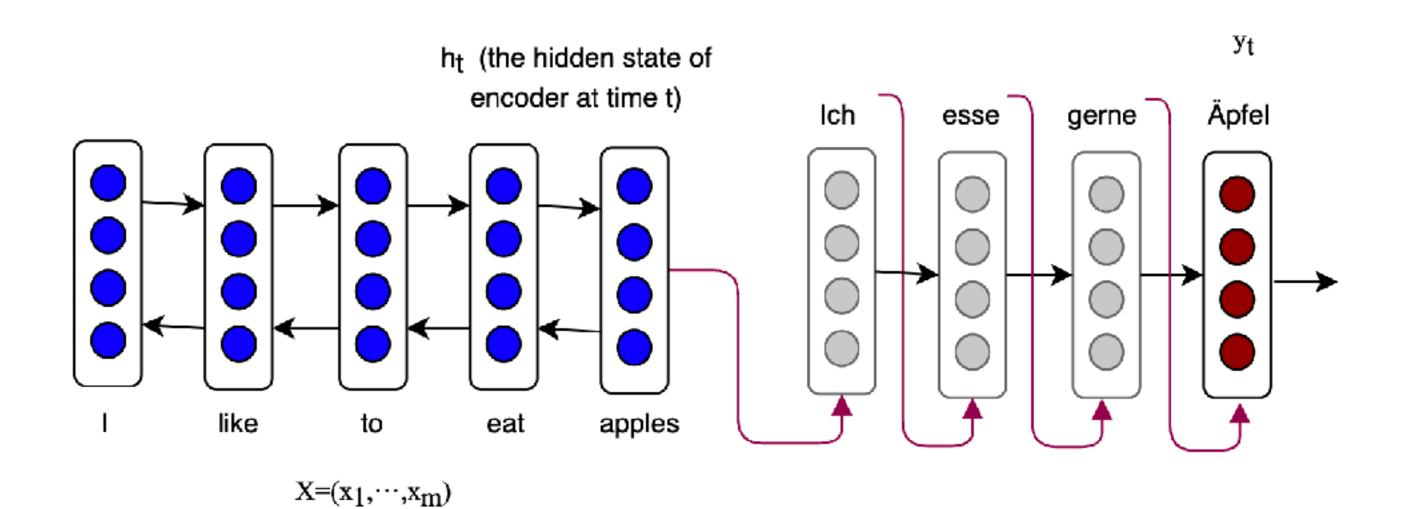
• The encoder encodes the input into a context vector



- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Earliest works

Machine Translation using RNNs

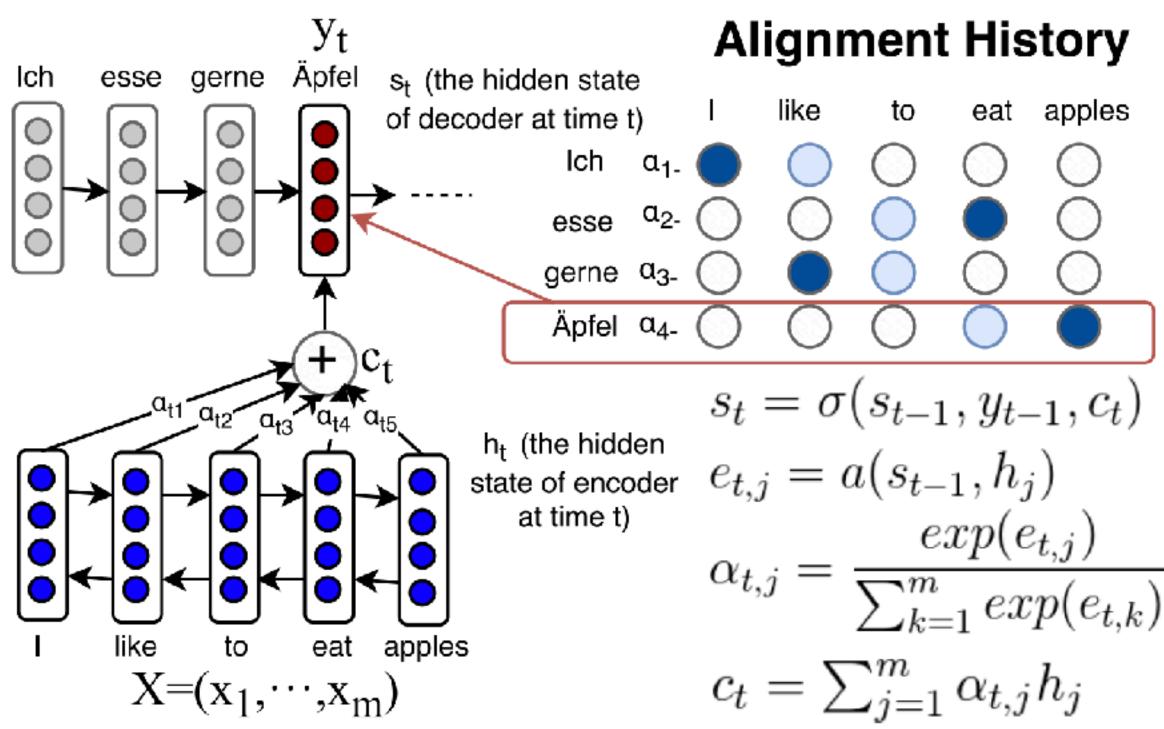


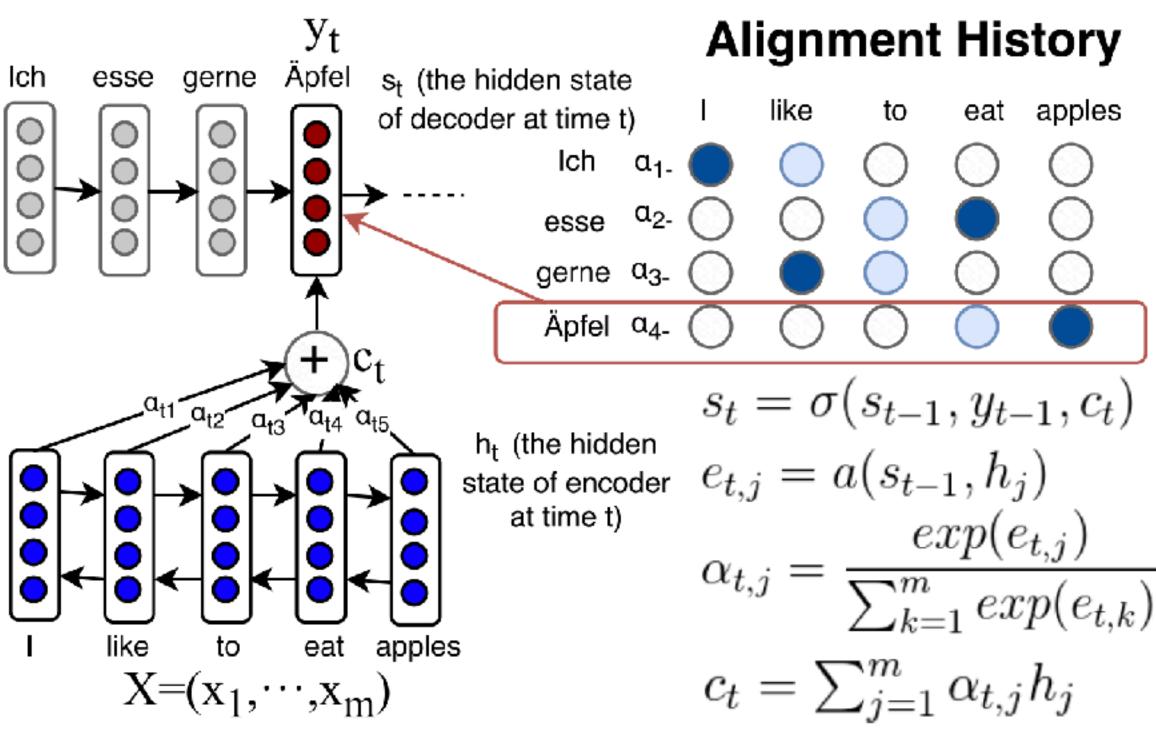
Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural Networks. NIPS 2014: 3104-3112

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Earliest works

Machine Translation using RNNs with attention mechanism





Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search** Ø

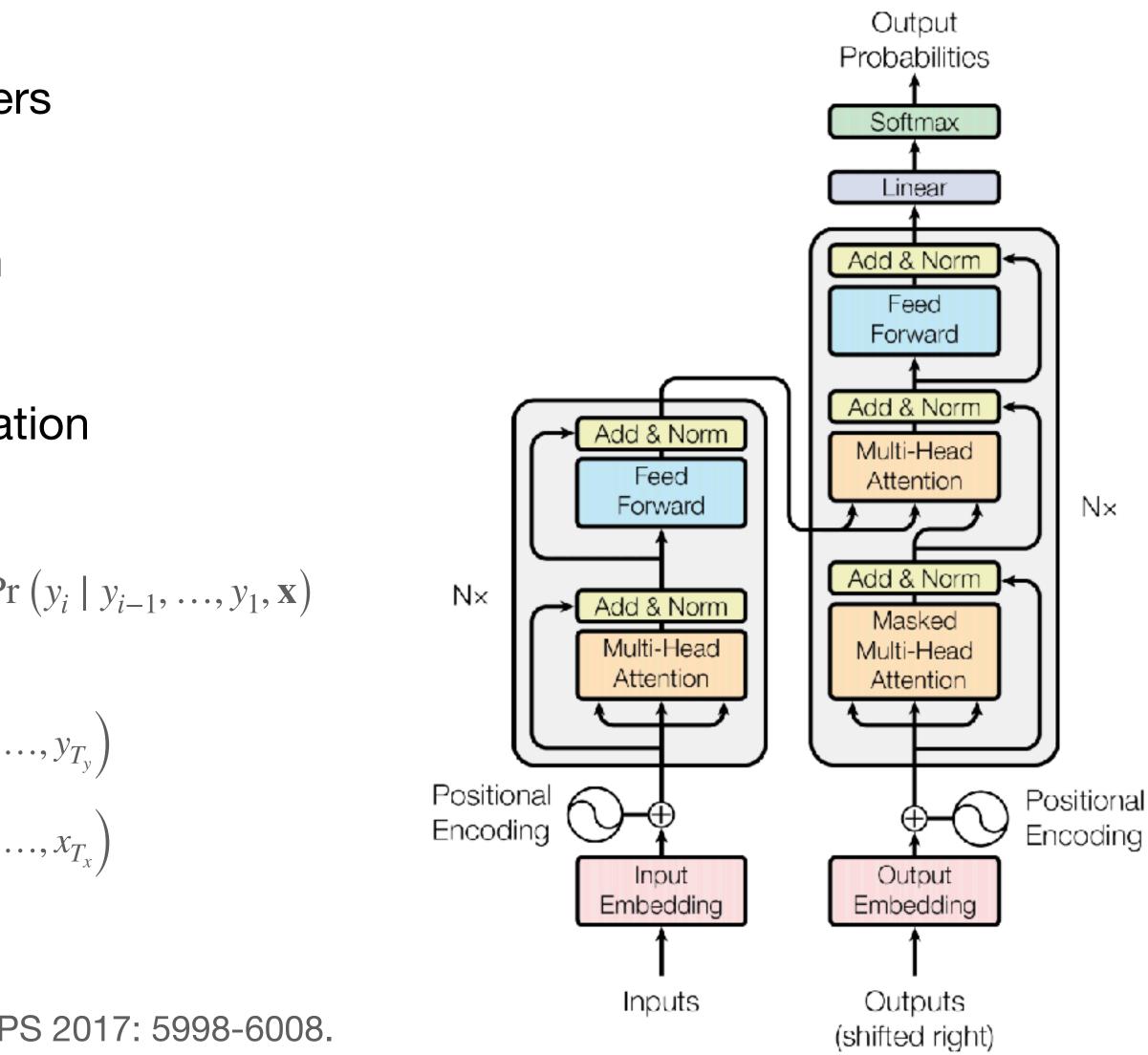
Earliest works

- Introducing transformers
 - Multihead attention
 - For machine translation

$$\Pr\left(y_1, \dots, y_n \mid \mathbf{x}\right) = \prod_{i}^{n} \Pr\left(y_i, \dots, y_n \mid \mathbf{x}\right)$$

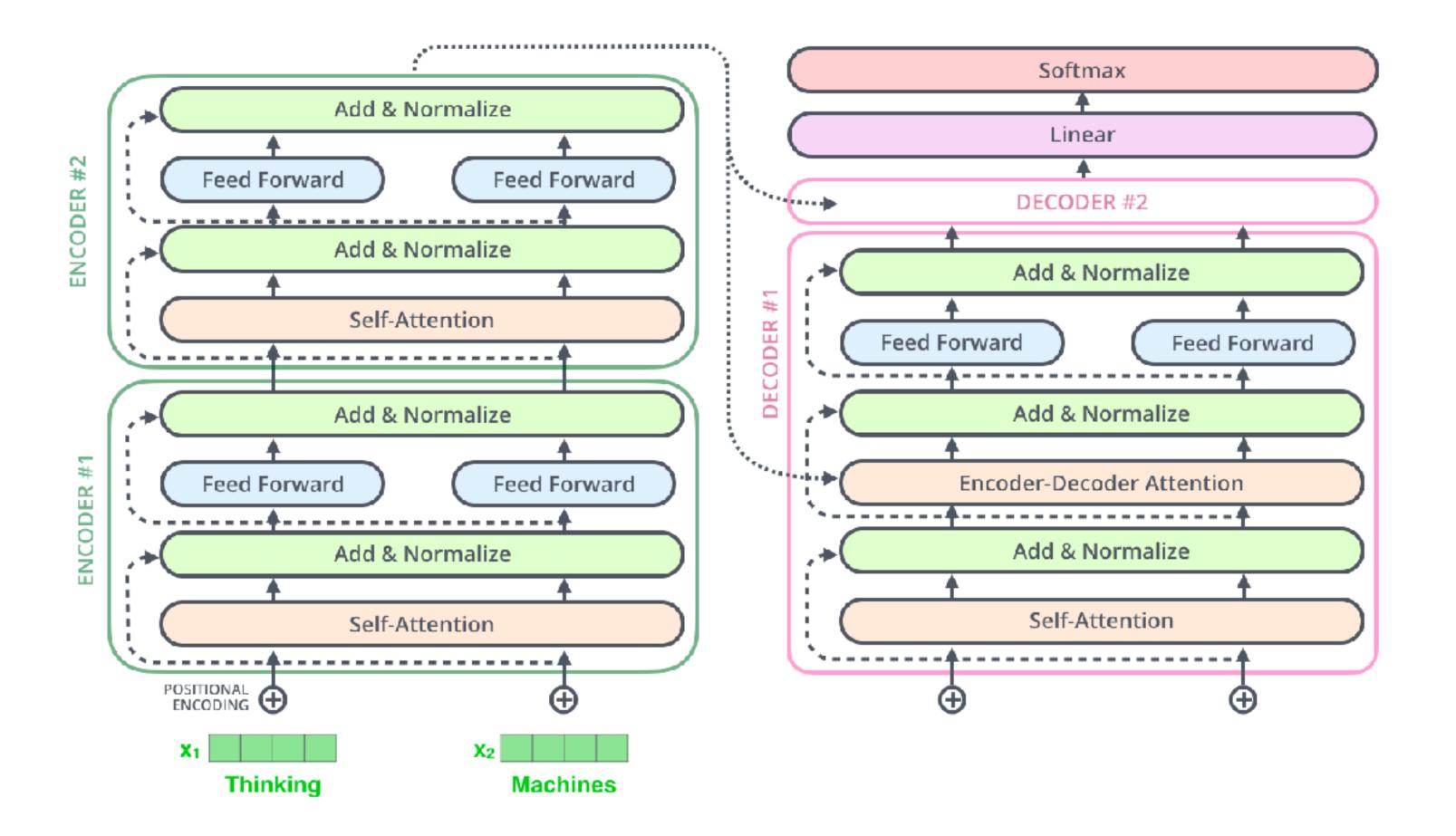
• Target seq $\mathbf{y} = (y_1, \dots, y_{T_y})$ • Source seq $\mathbf{x} = (x_1, \dots, x_{T_x})$

Ashish Vaswani et al. Attention is All you Need. NIPS 2017: 5998-6008.



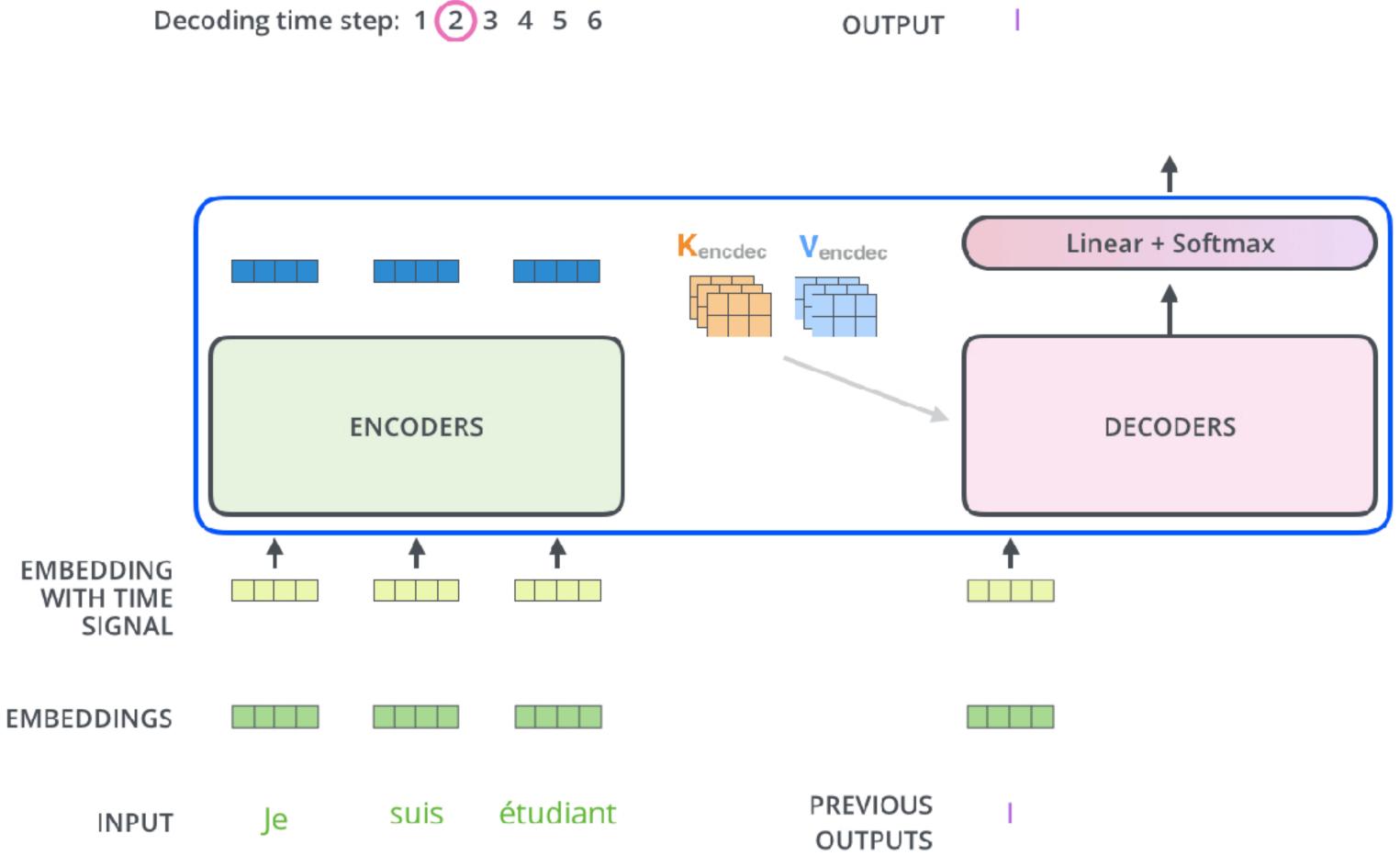
- **Earlier Models**
- Model T5
- Model BART
- Beam Search

Translation Model



- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

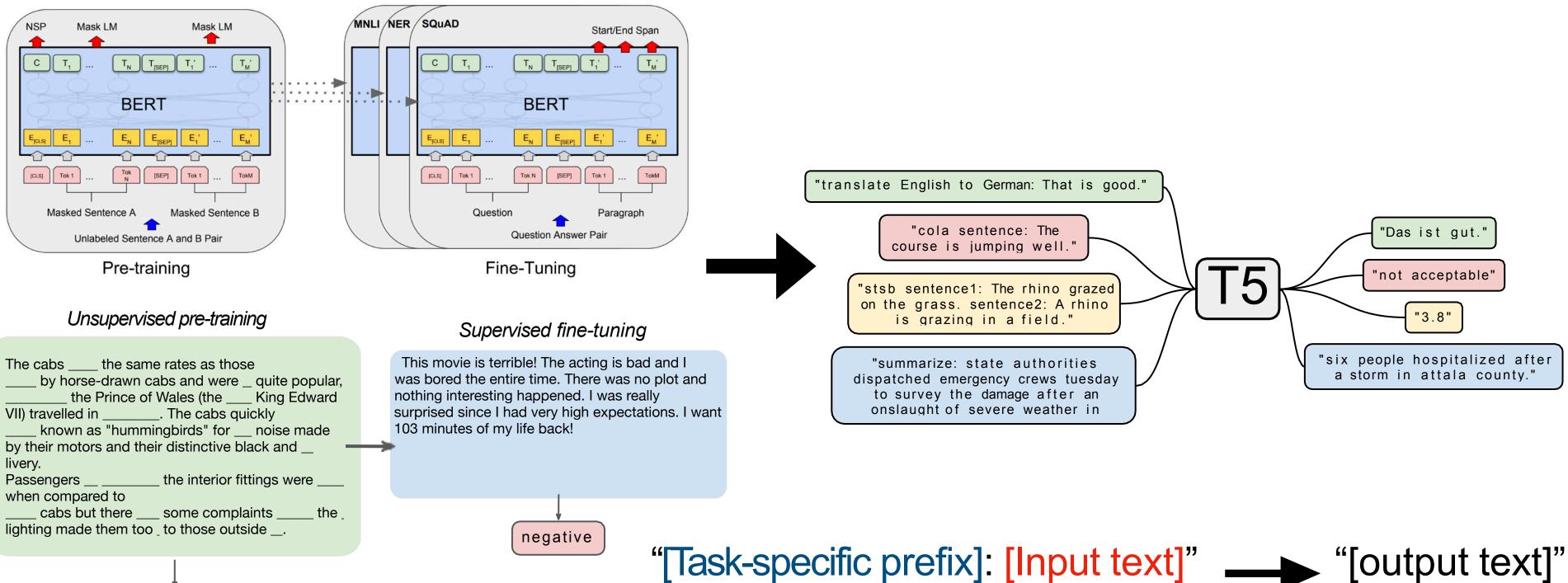
Animation of the Translation Model

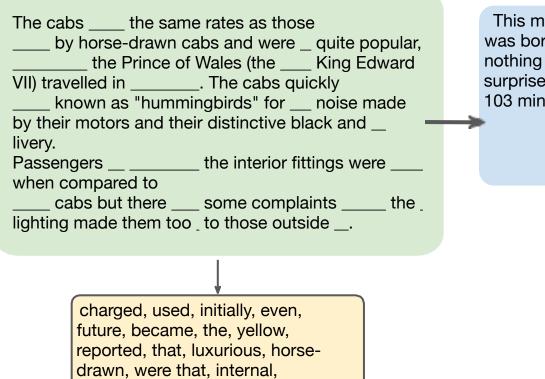


- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Basic Idea of T5

• Text-to-Text Transfer Transformer

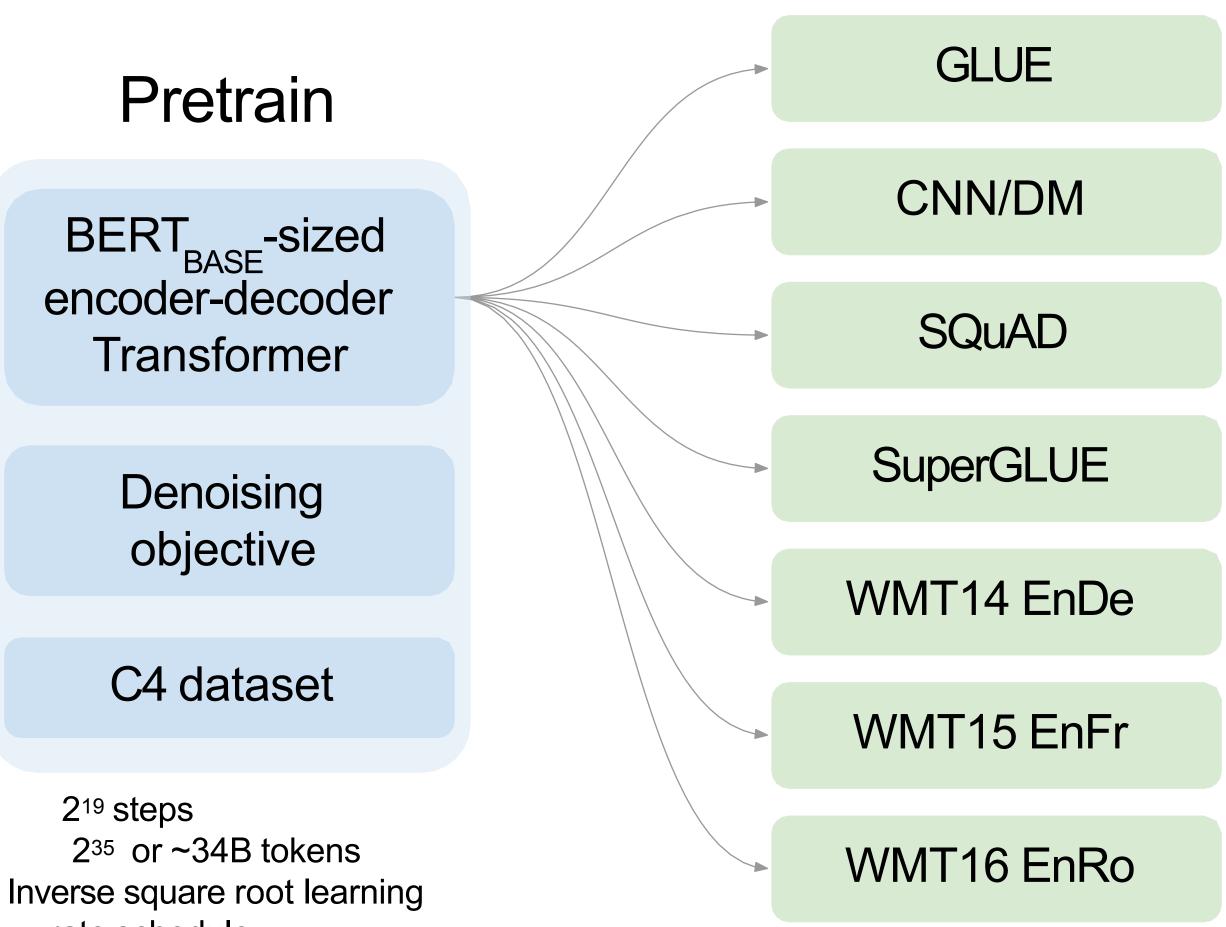




Moving from task-specific fine-tuning of language models — Single model for all

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Objective



rate schedule

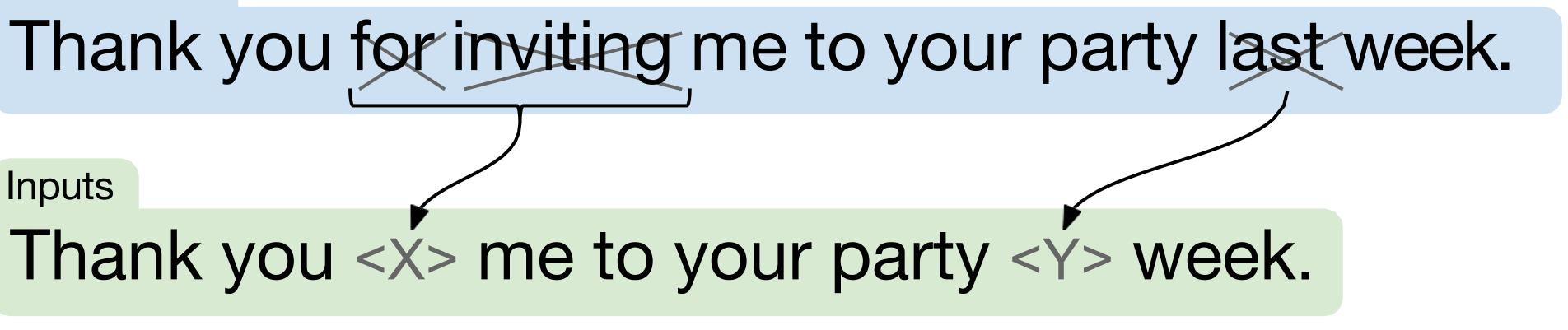
2¹⁸ steps 2^{34} or ~17B tokens Constant learning rate

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Original text

Inputs

Targets <x> for inviting



- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Finetuning Examples

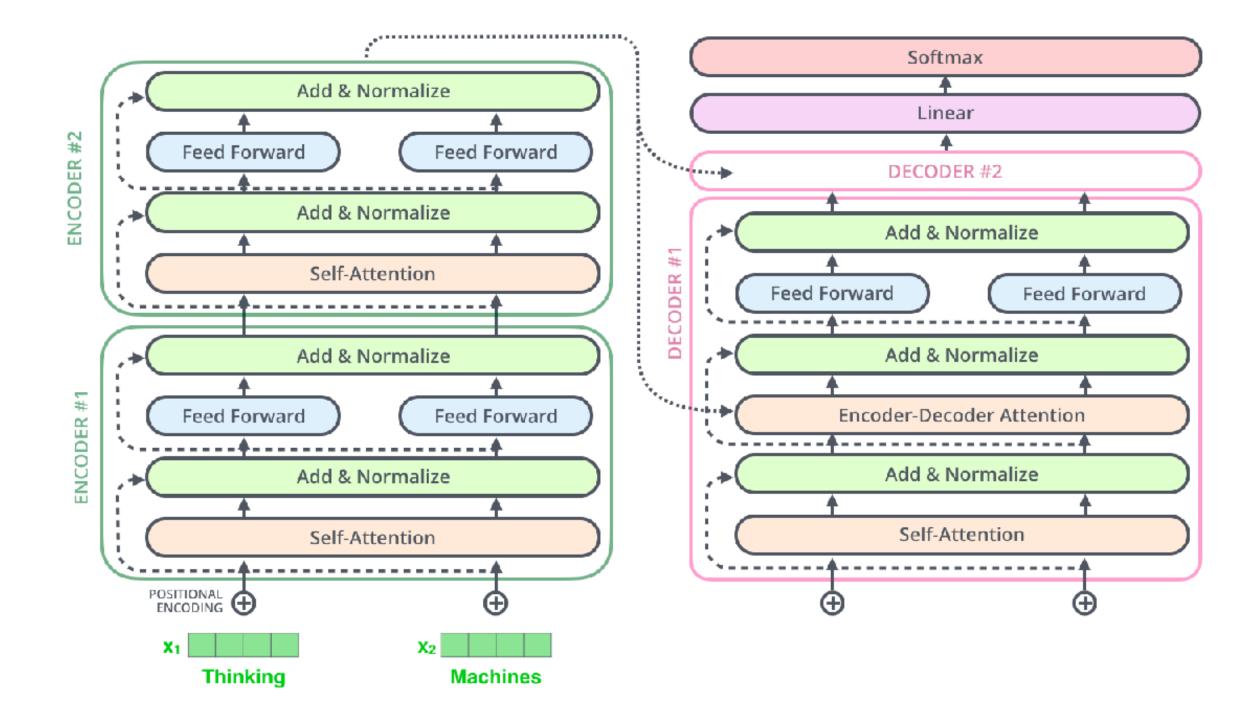
- CoLA (GLUE): Sentence acceptability \bullet **Input:** sentence, **output**: labels "acceptable" or "not acceptable" \bullet lacksquare
- Ex: "The course is jumping well." -> not acceptable
- STS-B (GLUE): Sentence similarity \bullet **Input**: pair of sentences, output: similarity score [1,5]
- - Ex: "sentence1: The rhino grazed. sentence2: A rhino is grazing." -> 3.8
- COPA (SuperGLUE): Causal reasoning
 - **Input:** premise and 2 alternatives, **output**: alternative1 or alternative2 \bullet
 - Ex: "Premise: I tipped the bottle. What happened as a RESULT? Alternative 1: The liquid in the bottle \bullet froze. Alternative 2: The liquid in the bottle poured out." -> alternative2
- EnDe (Translation):

- **CNNDM** (Summarization):
- "summarize: state authorities dispatched..." -> "six people hospitalized after storm"

"translate English to German: That is good" -> "Das ist gut"

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Vocab

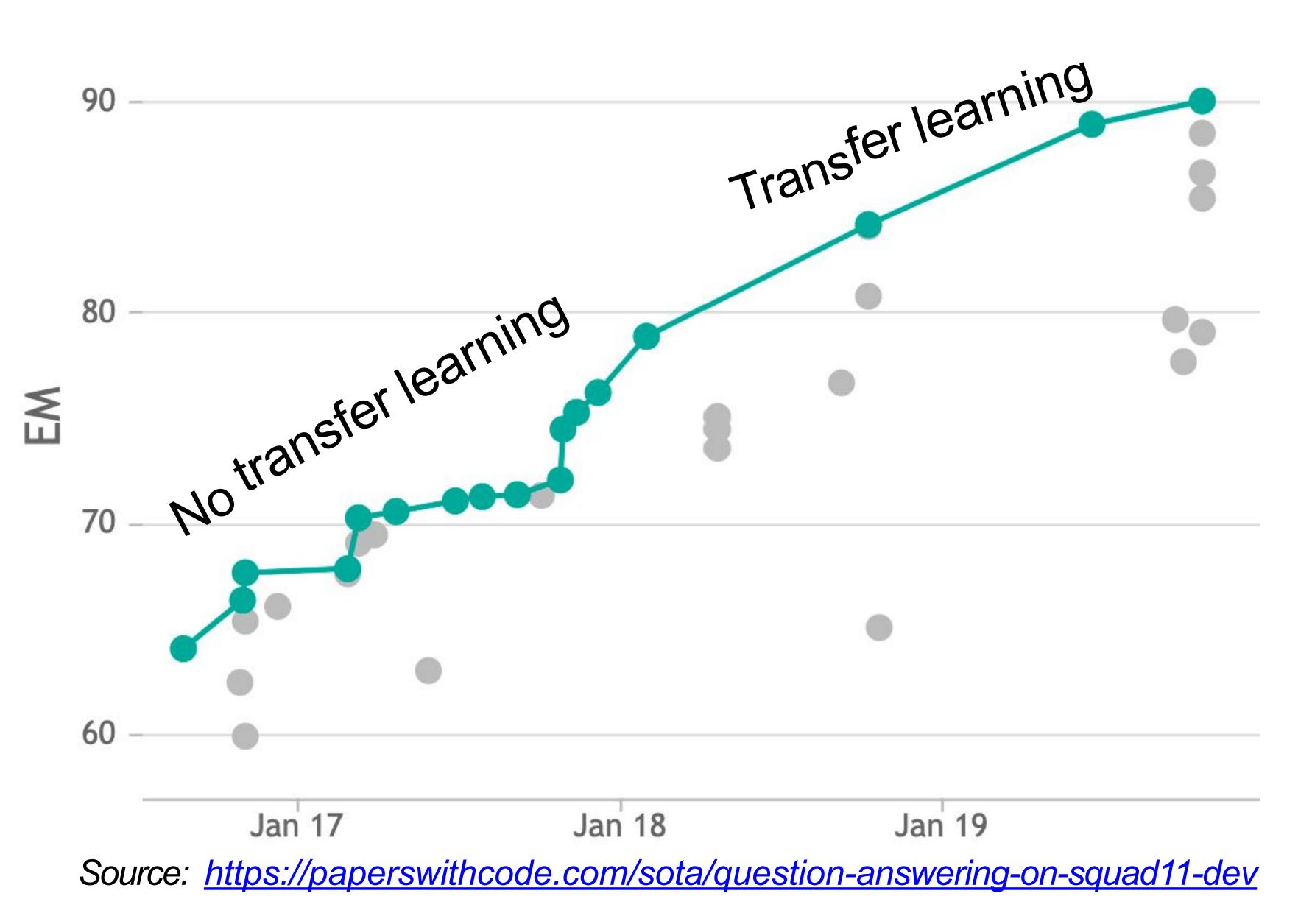


32,000 wordpieces shared across input and output

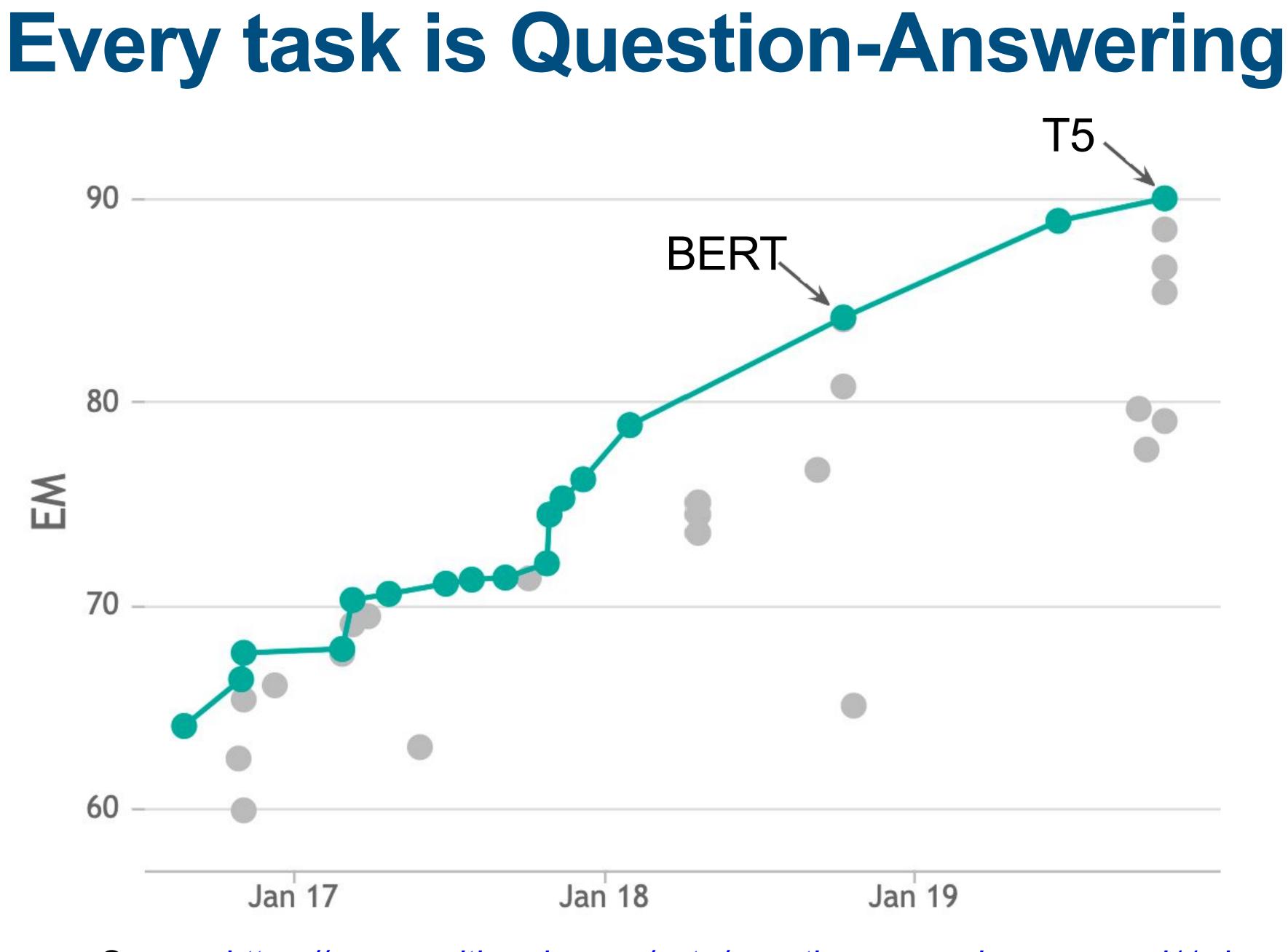
• Pre-training is English, but fine-tuning includes German, French, and Romanian

- **Earlier Models**
- Model T5
- **Model BART**
- **Beam Search**

Every task is Question-Answering



- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**



Source: https://paperswithcode.com/sota/question-answering-on-squad11-dev

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Training Dataset

- Web-extracted text
- English language only (langdetect)

Menu

The lemon, Citrus Limon (I.) Osbeck, is a species of small evergreen tree in the flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for culinary and non-culinary purposes throughout the world, primarily for its juice, which has both culinary and cleaning uses. The juice of the lemon is about 5% to 6% citric acid, with a ph of around 2.2, giving it a sour taste.

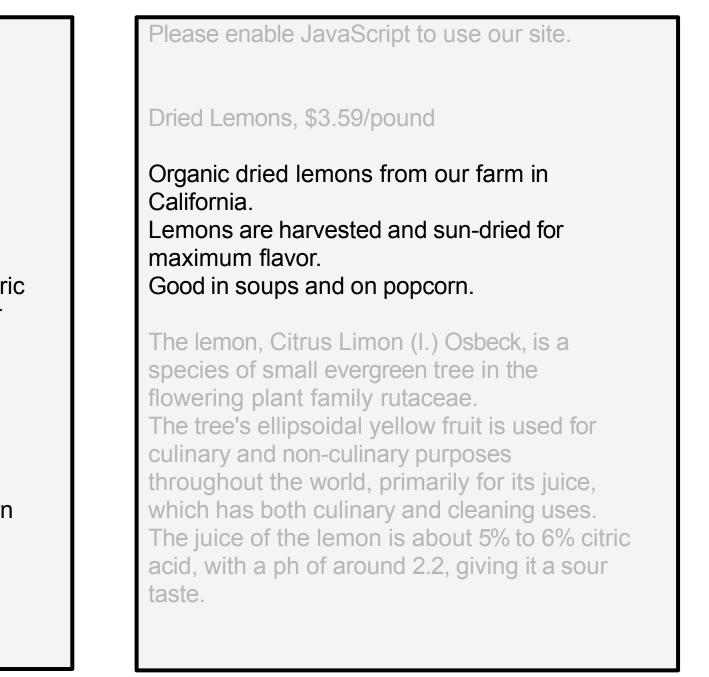
Article

The origin of the lemon is unknown, though lemons are thought to have first grown in Assam (a region in northeast India), northern Burma or China.

A genomic study of the lemon indicated it was a hybrid between bitter orange (sour orange) and citron.

• C4 Dataset: Colossal Clean Crawled Corpus

Extreme cleaning and filtering: 20TB - 750GB



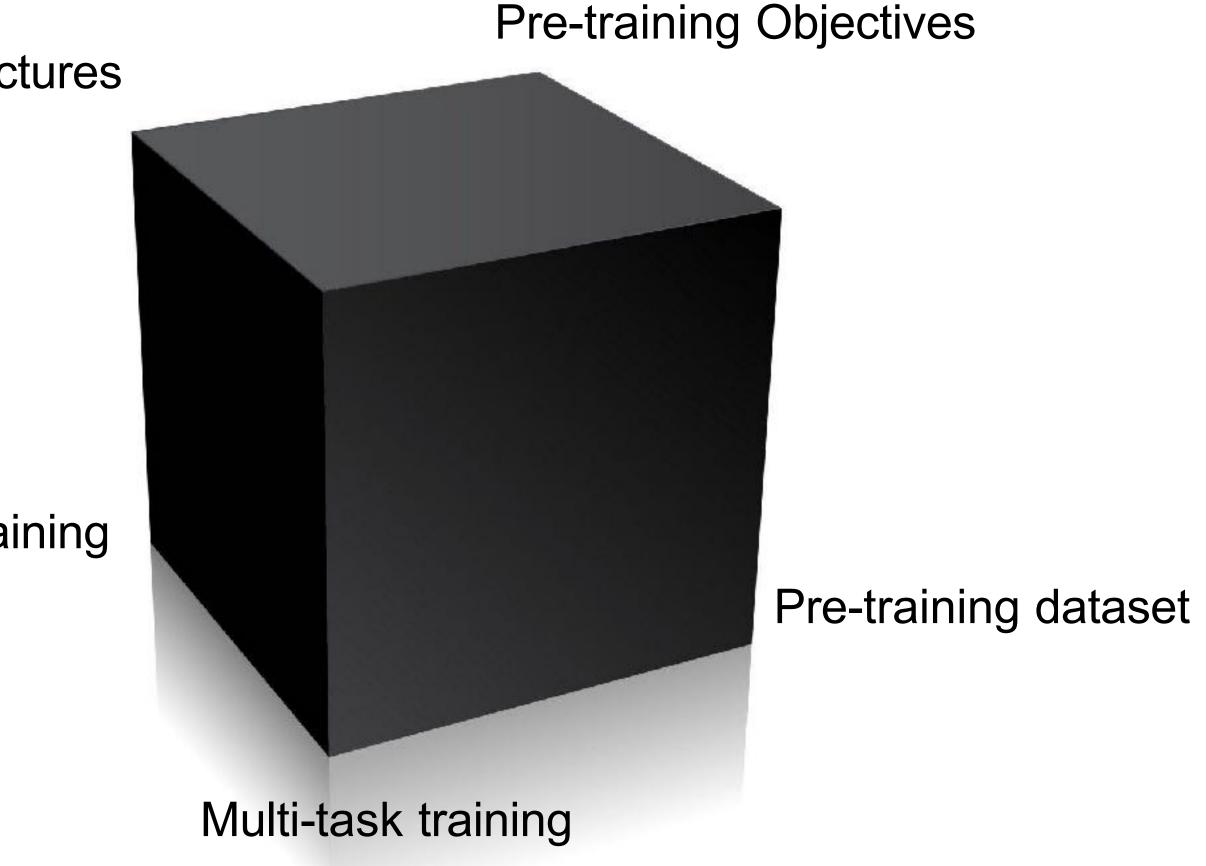
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur in tempus quam. In mollis et ante at consectetur. Aliquam erat volutpat. Donec at lacinia est. Duis semper, magna tempor interdum suscipit, ante elit molestie urna, eget efficitur risus nunc ac elit. Fusce quis blandit lectus. Mauris at mauris a turpis tristique lacinia at nec ante. Aenean in scelerisque tellus, a efficitur ipsum. Integer justo enim, ornare vitae sem non, mollis fermentum lectus. Mauris ultrices nisl at libero porta sodales in ac orci. function Ball(r) { this.radius = r;

- Earlier Models
- Model T5
- Model BART
- Beam Search

Trying different decisions for Pre-training and Fine-tuning

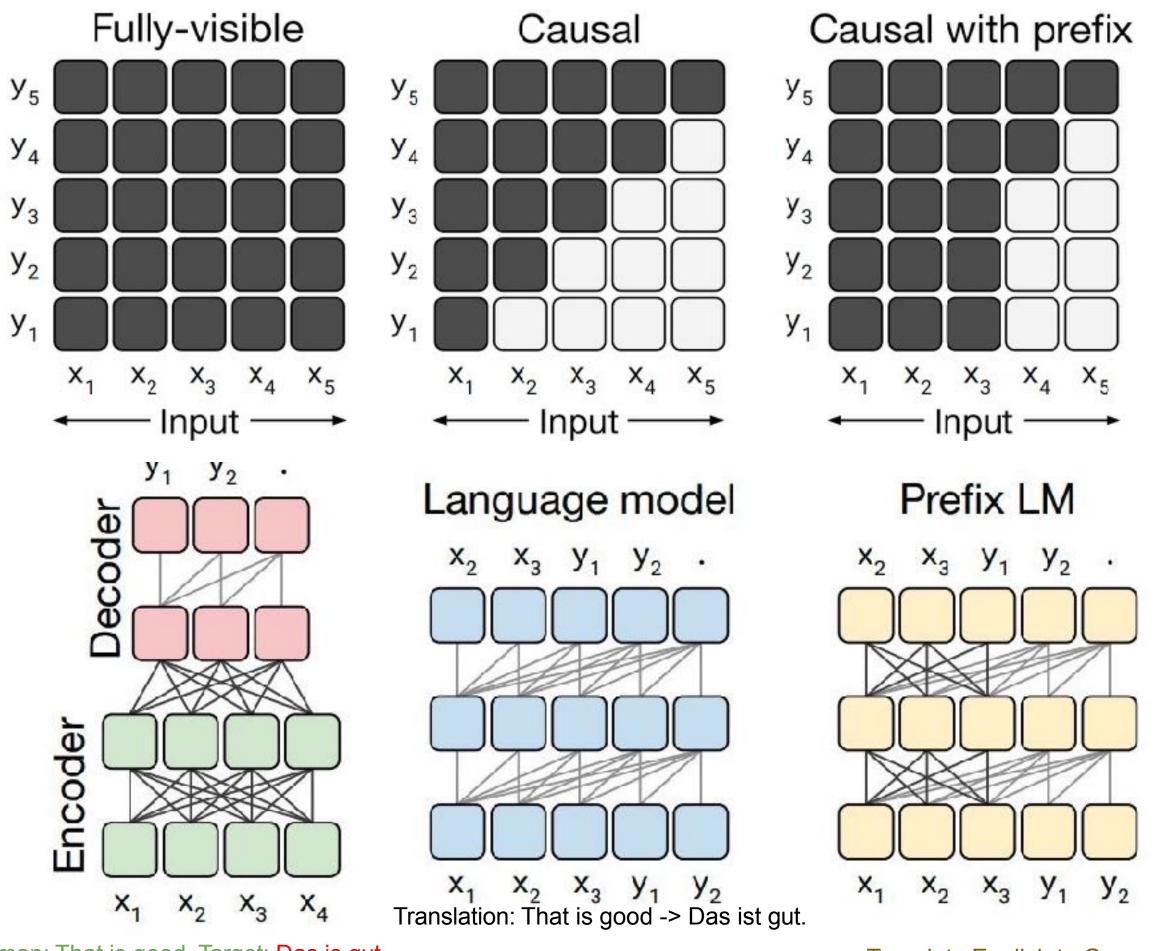
Architectures

Scale of the pre-training



- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Architecture - Attention Mask



Translate English to German: That is good. Target: Das is gut.

Output

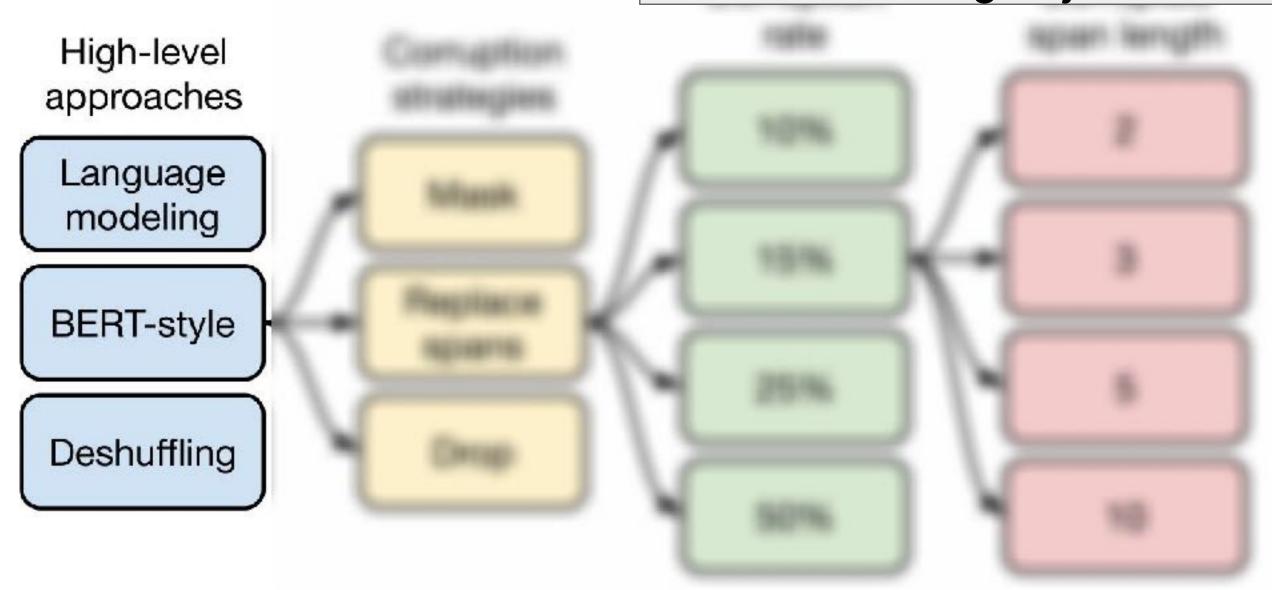
Architecture	Objective	Params	Cost	GLUE	CNNDM	\mathbf{SQuAD}	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★ Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	\dot{M}	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39

Translate English to German: That is good. Target: Das is gut. "Good" representation can look at "Translate English to German: That is. Target:"

Translate English to German: That is good. Target: Das is gut. "Good" representation can only look at "Translate English to German: That is".

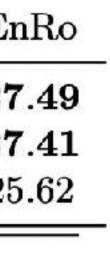
- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Pretraining Objective



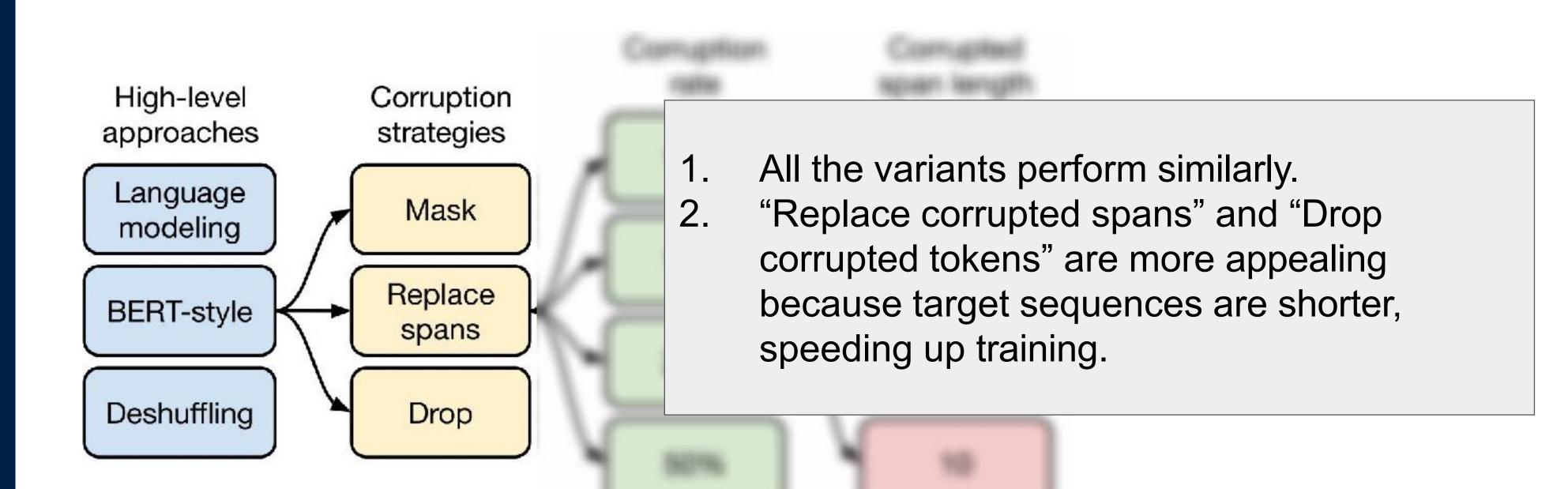
Objective		GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	En
Prefix language modeling	2018)	80.69 82.96	18.94 19.17	77.99	65.27 69.85	$26.86 \\ 26.78$	39.73 40.03	27 27
BERT-style (Devlin et al.,	2018)		and these inclusion	80.65	STANDAL CONTRACT	15465.44 00302		107803
Deshuffling		73.17	18.59	67.61	58.47	26.11	39.30	25
Objective	Inputs				Targets			
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling	Thank yo		e to your party a last fun you invi	The second s	(original		week .	

- BERT-style objective performs best. 1.
- Prefix LM works well on translation tasks. 2.
- Deshuffling objective is significantly worse. 3.



- Earlier Models
- Model T5
- Model BART
- Beam Search

Pretraining Objective



Objective

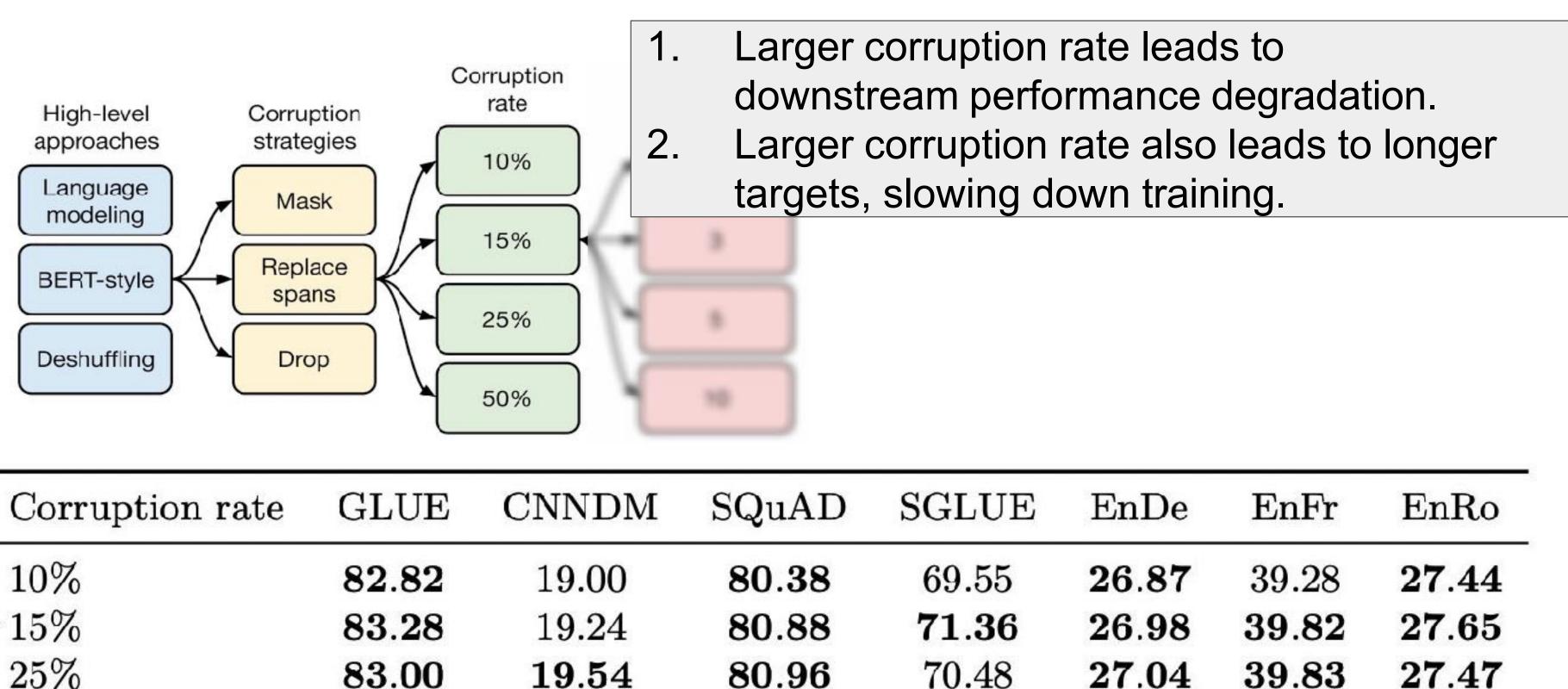
BERT-style (Devlin et al., 20 MASS-style (Song et al., 201

★ Replace corrupted spans Drop corrupted tokens

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
2018)	82.96	19.17	80.65	69.85	26.78	40.03	27.41
)19)	82.32	19.16	80.10	69.28	26.79	39.89	27.55
	83.28	19.24	80.88	71.36	26.98	39.82	27.65
	84.44	19.31	80.52	68.67	27.07	39.76	27.82

- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Different Corruption Rates

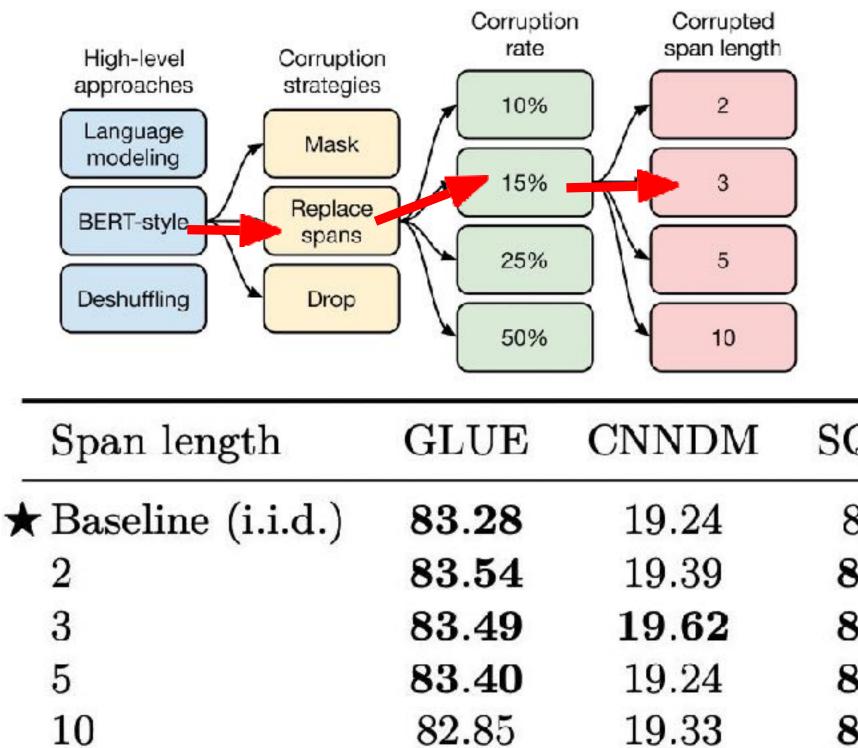


Corruption rate	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
10%	82.82	19.00	80.38	69.55	26.87	39.28	27.44
★ 15%	83.28	19.24	80.88	71.36	26.98	39.82	27.65
25%	83.00	19.54	80.96	70.48	27.04	39.83	27.47
50%	81.27	19.32	79.80	70.33	27.01	39.90	27.49

104

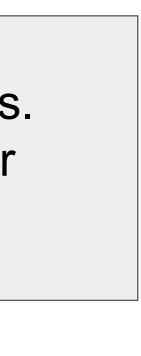
- Earlier Models
- Model T5
- Model BART
- Beam Search

Span-corruption rate



 Average span length of 3 works well on most non-translation tasks.
 Span corruption produces shorter target sequences and leads to speedup in training.

UE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
28	19.24	80.88	71.36	26.98	39.82	27.65
54	19.39	82.09	72.20	26.76	39.99	27.63
49	19.62	81.84	72.53	26.86	39.65	27.62
40	19.24	82.05	72.23	26.88	39.40	27.53
85	19.33	81.84	70.44	26.79	39.49	27.69



- **Earlier Models**
- Model T5
- Model BART
- **Beam Search**

Multitasking

Training strategy

- \star Unsupervised pre-training + f Multi-task training Multi-task pre-training + fine-Leave-one-out multi-task train Supervised multi-task pre-trai
 - 1. + fine-tuning.
- 2.

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnR
fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.6
	81.42	19.24	79.78	67.30	25.21	36.30	27.7
e-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.0
ining	81.98	19.05	79.97	71.68	26.93	39.79	27.8
aining	79.93	18.96	77.38	65.36	26.81	40.13	28.0

Multi-task pre-training + fine-tuning works as well as unsupervised pre-training

Practical benefit of Multi-task pre-training + fine-tuning is to monitor downstream performance during pre-training.

- **Earlier Models**
- Model T5
- Model BART
- Beam Search

Architecture	Obje	ective	Params	Cost	GLU	Έ	CNND	M S	SQuA	D SG	LUE	EnDe	\mathbf{EnFr}	EnRe
Encoder-decoder	Dene	oising	2P	M	83.2	8	19.2 4	4	80.8	8 71	.36	26.98	39.82	27.6
Enc-dec, shared	Dene	oising	P	M	82.8	1	18.78	3	80.6	3 70	.73	26.72	39.03	27.4
Enc-dec, 6 layers	Dene	oising	P	M/2	80.8	8	18.97	7	77.5	9 68	3.42	26.38	38.40	26.9!
Language model	Dene	oising	P	M	74.7	0	17.93	3	61.1	4 55	5.02	25.09	35.28	25.80
Prefix LM	Dene	oising	P	M	81.8	2	18.61	Ĺ	78.9	4 68	8.11	26.43	37.98	27.39
Span length	GLUE	CNNI	DM SG	uAD S	SGLUE	Er	nDe 🗌	EnFr	En	Ro				
Baseline (i.i.d.)	83.28	19.2	4 8	0.88	71.36	26	6.98 3	39.82	27.	65				
2	83.54	19.3	9 8:	2.09	72.20	26	6.76 3	39.99	27.	63				
3	83.49	19.6	2 8	1.84	72.53	26	6.86	39. 65	27.	62				
5	83.40	19.2	4 82	2.05	72.23	26	5.88	39 .40	27.	53				
10	82.85	19.3	3 8	1.84	70.44	26	6.79	39.49	27.	69				
Data set	ę	Size	GLUE	CNN	DM S	SQu	AD a	SGLU	\mathbf{E}	EnDe	\mathbf{EnFr}	\mathbf{EnF}	lo	
r C4	74	5GB	83.28	19.2	24	80.3	88	71.3	6	26.98	39.82	27.6	35	
C4, unfiltered	6.	$1\mathbf{TB}$	81.46	19.1	14	78.'	78	68.0	4	26.55	39.34	27.2	21	
RealNews-like	3.	$5\mathrm{GB}$	83.83	19.2	23	80.3	39	72.3	8	26.75	39.90	27.4	18	
WebText-like	1′	7 GB	84.03	19.5	31	81.4	42	71.4	D	26.80	39.74	27.5	59	
Wikipedia	10	6 GB	81.85	19.3	31	81.	29	68.0	1	26.94	39.69	27.6	67	
Wikipedia + TE	BC 20	0GB	83.65	19.2	28	82.	08	73.2	4	26.77	39.63	27.5	57	
Training strategy				GLUE	CNND	M	SQuAI	D SC	LUE	EnDe	EnFr	r EnF	Ro	
Unsupervised pre-	training	\pm fine-t	uning	83.28	19.2 4	1	80.88	7	1.36	26.98	39.82	2 27.6	35	
Multi-task trainin		1 1110-0	aming	81.42	19.24		79.78		7.30	25.21	36.30			
Multi-task pre-tra	0	fine-tun	ing	83.11	19.12		80.26		1.03	27.08				
Leave-one-out mu	-		0	81.98	19.05		79.97		1.68	26.93				
Supervised multi-		0		79.93	18.96	5	77.38	6	5.36	26.81	40.13	3 28.0)4	
Scaling strategy		GLUE	CNND	M SQuA	D SGI	UF	EnDe	EnFr	Fn	Ro				
				•					27 (24) 20					
★ Baseline $1 \times$ size, $4 \times$ training	stone	$83.28 \\ 85.33$	$19.24 \\ 19.33$.36 .72	$26.98 \\ 27.08$	$39.82 \\ 40.66$.65 .93				
$1 \times$ size, $4 \times$ batch si		84.60	19.33			.64	27.07	40.60		.84				
$2 \times$ size, $2 \times$ training		86.18	19.66			.18	27.52	41.03		.19				
$4 \times$ size, $1 \times$ training		85.91	19.73	83.8	6 78.	.04	27.47	40.71	28	.10				
$4 \times$ ensembled		84.77	20.10			.74	28.05	40.53		.57				
$4\times$ ensembled, fine-	tune only	84.05	19.57	82.3	6 71.	.55	27.55	40.22	28	.09				

Architecture	Objective	Params	Cost	GLUE	e cnni	DM S	5QuA	D SGI	LUE I	EnDe	EnFr	EnR
Encoder-decoder	Denoising	2P	M	83.28	3 19.2	24	80.88	3 71	.36 2	26.98	39.82	27.6
Enc-dec, shared	Denoising	P	M	82.81	18.7	8	80.63	5 70	.73	26.72	39.03	27.4
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.9	7	77.59	68	.42	26.38	38.40	26.9
Language model	Denoising	P	\dot{M}	74.70	17.9	3	61.14	55	.02	25.09	35.28	25.8
Prefix LM	Denoising	Р	M	81.82			78.94	68	.11	26.43	37.98	27.3
Span length GI	LUE CNN	NDM SG	uAD S	SGLUE	EnDe	EnFr	EnF	lo				
Baseline (i.i.d.) 83	. 28 19.	.24 8	0.88	71.36	26.98	39.82	27.6	35				
· · ·			2.09	72.20	26.76	39.99	27.6					
			1.84	72.53	26.86	39.65	27.6					
			2.05	72.23	26.88	39 .40	27.5					
			1.84	70.44	26.79	39 .49	27.6					
Data set	Size	GLUE	CNN.	DM S	QuAD	SGLU	JE I	EnDe	EnFr	EnF	lo	
r C4	745GB	83.28	19.2	24	80.88	71.3	6 5	26.98	39.82	27.6	35	
C4, unfiltered	6.1 TB	81.46	19.1	14	78.78	68.04	4	26.55	39.34	27.2	21	
RealNews-like	35GB	83.83	19.2	23	80.39	72.3	8 3	26.75	39.90	27.4	18	
WebText-like	17GB	84.03	19.3	31	81.42	71.4	0 2	26.80	39.74	27.5	59	
Wikipedia	16GB	81.85	19.3	31	81.29	68.0	1 :	26.94	39.69	27.6	67	
Wikipedia + TBC	$20 \mathrm{GB}$	83.65	19.2		82.08	73.2		26.77	39.63	27.5		
Training strategy			GLUE	CNNDN	M SQuA	D SC	LUE	EnDe	EnFr	EnF	lo	
Unsupervised pre-tra	ining + fine	-tuning	83.28	1 9 . 2 4	80.8	8 7	1.36	26.98	39.82	27.6	35	
Multi-task training		, turning	81.42	19.24			7.30	25.21	36.30			
Multi-task pre-trainin	ng + fine-tu	ning	83.11	19.12			1.03	27.08	39.80			
Leave-one-out multi-	-	-	81.98	19.05			1.68	26.93	39.79			
Supervised multi-task		U	79.93	18.96			5.36	26.81	40.13			
Scaling strategy	GLU	E CNND	M SQuA		UE EnDe	EnFr	EnF	20				
			•			00000000						
★ Baseline $1 \times$ size, $4 \times$ training ste	83.2 eps 85.3											
$1 \times$ size, $4 \times$ training stellar $1 \times$ size, $4 \times$ batch size	ps 85.5 84.6											
$2 \times$ size, $2 \times$ training ste												
$4 \times$ size, $1 \times$ training ste	• • • • • • • • • • • • • • • • • • •											
$4 \times$ ensembled	84.7											
$4 \times$ ensembled, fine-tune	e only 84.0	5 19.57	82.3	6 71.5	55 27.55	40.22	28.0)9				

107

- Earlier Models
- Model T5
- Model BART
- Beam Search

Model Size

Model	Parameters	No. of layers	$d_{\rm model}$	$d_{ m ff}$	$ d_{kv}$	No. of heads
Small	60M	6	512	2048	64	8
Base	220M	12	768	3072	64	12
Large	770M	24	1024	4096	64	16
3B	3B	24	1024	16384	128	32
11B	11 B	24	1024	65536	128	128

Model	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Previous best	89.4	20.30	95.5	84.6	33.8	43.8	38.5
T5-Small	77.4	19.56	87.24	63.3	26.7	36.0	26.8
T5-Base	82.7	20.34	92.08	76.2	30.9	41.2	28.0
T5-Large	86.4	20.68	93.79	82.3	32.0	41.5	28.1
T5-3B	88.5	21.02	94.95	86.4	31.8	42.6	28.2
T5-11B	89.7	21.55	95.64	88.9	32.1	43.4	28.1

- Earlier Models
- Model T5
- Model BART
- Beam Search

BART

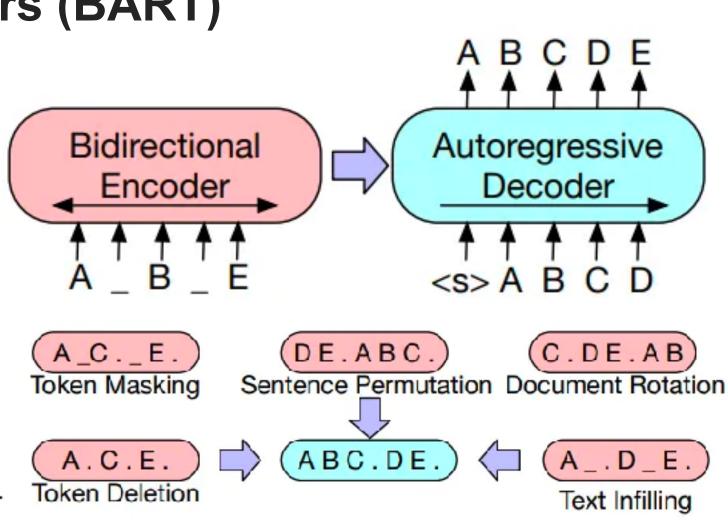
Bidirectional and Auto-Regressive Transformers (BART)

- A bidirectional encoder and an autoregressive decoder.

- BART achieves the state of the art results in the summarization task.

Model	SQuAD 1.1 F1	MNLI Acc	ELI5 PPL	XSum PPL	ConvAI2 PPL	CNN/DM PPL
BERT Base (Devlin et al., 2019)	88.5	84.3	-	-	-	-
Masked Language Model	90.0	83.5	24.77	7.87	12.59	7.06
Masked Seq2seq	87.0	82.1	23.40	6.80	11.43	6.19
Language Model	76.7	80.1	21.40	7.00	11.51	6.56
Permuted Language Model	89.1	83.7	24.03	7.69	12.23	6.96
Multitask Masked Language Model	89.2	82.4	23.73	7.50	12.39	6.74
BART Base						
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41

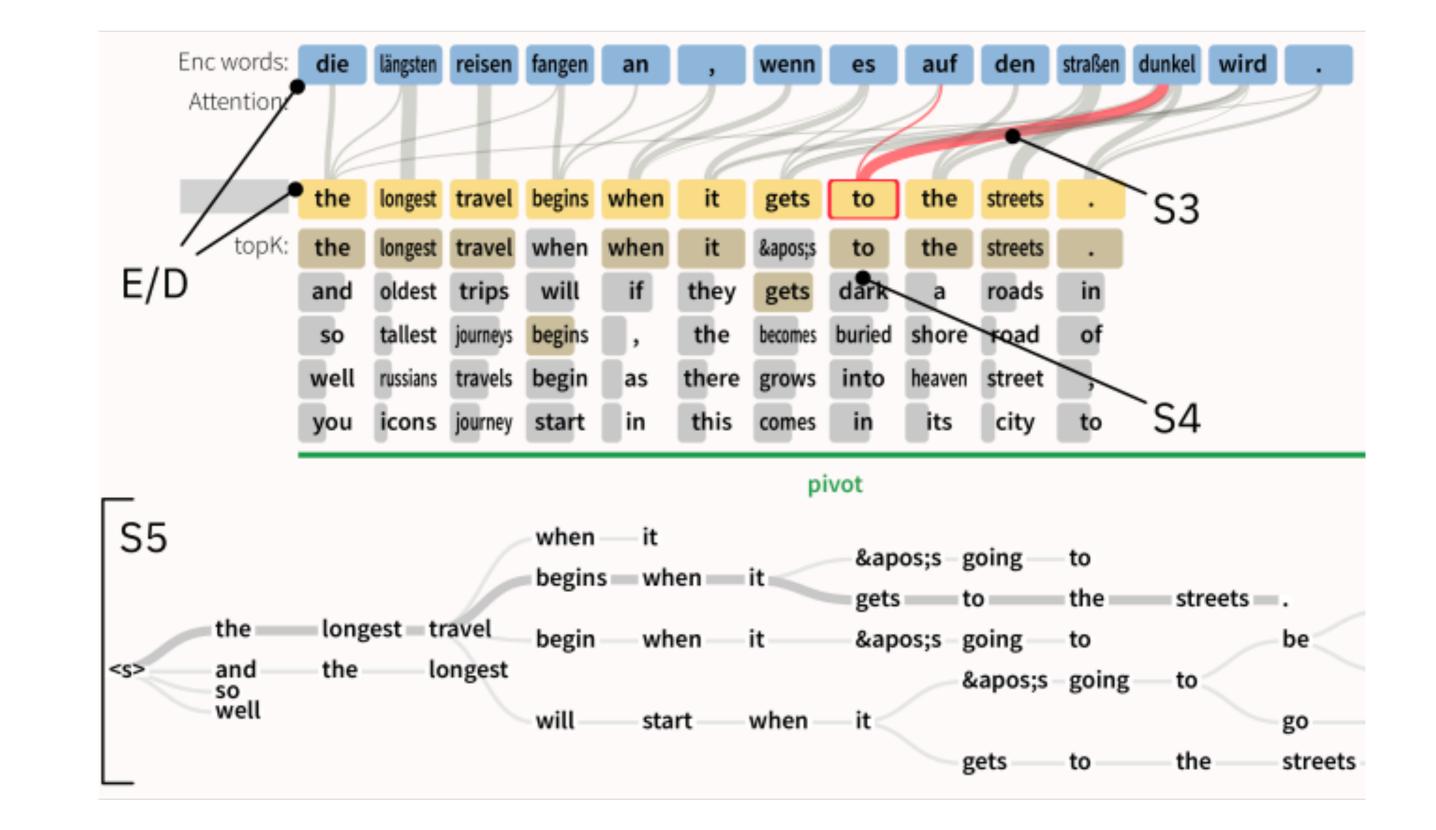
Lewis, Mike, et al. "Bart: Denoising sequence-to-sequ *ACL 2020*.



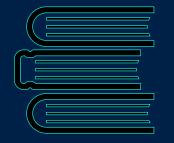
"Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension."

- Earlier Models
- Model T5
- Model BART
- Beam Search

Beam Search for Decoding



- Stanford CS224 Deep NLP
- Stanford CS324 Large Language Models
- Pittsburgh CS1678 Deep Learning lacksquare
- UC Berkeley Info256 NLP



Processing (3rd ed. Draft).

• بخش قابل توجهی از اسلایدها با استفاده از منابع زیرست و یا از آنها الهام گرفته شده است:

Princeton COS 597G - Understanding Large Language Models

Dan Jurafsky and James H. Martin. Speech and Language

Some Recommended Papers to Read

Transformer Introduction

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Positional Embedding

Dufter, Philipp, Martin Schmitt, and Hinrich Schütze. "Position information in transformers: An overview." Computational Linguistics 48.3 (2022): 733-763.

Yu-An Wang and Yun-Nung Chen. 2020. What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6840–6849, Online. Association for Computational Linguistics.

Attention Alternatives

Bello, Irwan. "Lambdanetworks: Modeling long-range interactions without attention." arXiv preprint arXiv:2102.08602 (2021).

Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." Advances in neural information processing systems 33 (2020): 17283-17297.

Subword Tokenization Issues in Transformers

Kaj Bostrom and Greg Durrett. 2020. Byte Pair Encoding is Suboptimal for Language Model Pretraining. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4617–4624, Online. Association for Computational Linguistics.

A Deep Dive into BERT model architecture

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky. "A primer in BERTology: What we know about how BERT works." Transactions of the Association for Computational Linguistics 8 (2021): 842-866.

GPT Model Few Shot Learning

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

T5 Model

Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." The Journal of Machine Learning Research 21.1 (2020): 5485-5551.

Visual Transformers

Y. Liu et al., "A Survey of Visual Transformers," in IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/ TNNLS.2022.3227717.

