Large Language Models

Prompting for Zero-Shot and Few-Shot Learning

Mohammad Hossein Rohban

Fall 2023

Courtesy: Most of the slides are adopted from the course COS 597G and the paper "Making Pre-trained Language Models Better Few-shot Learners" b Gao et al.

What is Zero-Shot Learning?

- Zero-Shot Learning (ZSL) [2009-]
 - Unseen test sample classes (or tasks) during training
 - Has to associate observed and non-observed classes
 - Auxiliary information is used to make this happen
 - e.g. a model trained to recognize horses along with textual info of how each animal looks like recan classify zebras too!

ZSL (cont.)

- T0: An encoder-decoder model
 - 16x smaller than GPT-3
 - Can generalize to unseen NLP tasks
 - Explicit multi-task learning to achieve ZSL.
 - Map any NLP task into a readable prompt.
 - Fine-tuned the T5 model on multi-task training dataset.
 - <u>https://bigscience.huggingface.co/blog/t0</u>

Sentiment Analysis

Review: We came here on a Saturday night and luckily it wasn't as packed as I thought it would be [...] On a scale of 1 to 5, I would give this a

Question Answering

I know that the answer to "What team did the Panthers defeat?" is in "The Panthers finished the regular season [...]". Can you tell me what it is?

Multi-task training Zero-shot generalization

Natural Language Inference

Suppose "The banker contacted the professors and the athlete". Can we infer that "The banker contacted the professors"? 4 Arizona Cardinals

Graffiti artist Banksy

is believed to be

behind [...]

Few-Shot Learning

• Including few examples of test task at inference time.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

LLMs have ZSL and FSL capabilities

Let's have a discussion

- Don't have the luxury of deploying a 100-B parameter.
 - All we can afford is a pre-trained 100-M parameter model.
- Have only a couple of labeled examples from the target task.
 - Let's say sentiment analysis of movies.
- How to go about this?

1st Solution: Head-based Fine-Tuning of a MLM

- How many trainable parameters are involved?
- hidden_size \times num_classes
- Does it work well when given only ~10 training samples?

What else we can do? Let's discuss.

- ... which better suits the FSL setup?
- Utilizing the masked token prediction capability of the BERT.

Prompt-based Fine-Tuning

Prompt-based Fine-Tuning (cont.)

• Step 1: Formulate the task into a masked token prediction through a prompt template:

• Step 2: Choose a label-word mapping M.

great (label:positive) *terrible* (label:negative) ✓ Label mapping $\mathcal{M}(\mathcal{Y})$

Prompt-based Fine-Tuning (cont.)

• Step 3: Fine-tune the LM to fill in the correct word

$$p(y \mid x_{\text{in}}) = p\left([\text{MASK}] = \mathcal{M}(y) \mid x_{\text{prompt}} \right)$$
$$= \frac{\exp\left(\mathbf{w}_{\mathcal{M}(y)} \cdot \mathbf{h}_{[\text{MASK}]}\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(\mathbf{w}_{\mathcal{M}(y')} \cdot \mathbf{h}_{[\text{MASK}]}\right)},$$

Regression Problem

• Regression: interpolating between two extremes

$$y = v_l \cdot p(y_l \mid x_{in}) + v_u \cdot p(y_u \mid x_{in})$$

• The LM is fine-tuned to minimize the KL-divergence between the inferred $P(y_u | x_{in})$ and $(y - v_l)/(v_u - v_l)$ the observed target.

Evaluation Datasets

Category	Dataset	$ \mathcal{Y} $	L	#Train	#Test	Туре	Labels (classification tasks)
	SST-2	2	19	6,920	872	sentiment	positive, negative
	SST-5	5	18	8,544	2,210	sentiment	v. pos., positive, neutral, negative, v. neg.
	MR	2	20	8,662	2,000	sentiment	positive, negative
single-	CR	2	19	1,775	2,000	sentiment	positive, negative
sentence	MPQA	2	3	8,606	2,000	opinion polarity	positive, negative
	Subj	2	23	8,000	2,000	subjectivity	subjective, objective
	TREC	6	10	5,452	500	question cls.	abbr., entity, description, human, loc., num.
	CoLA	2	8	8,551	1,042	acceptability	grammatical, not_grammatical
	MNLI	3	22/11	392,702	9,815	NLI	entailment, neutral, contradiction
	SNLI	3	14/8	549,367	9,842	NLI	entailment, neutral, contradiction
sentence-	QNLI	2	11/30	104,743	5,463	NLI	entailment, not_entailment
pair	RTE	2	49/10	2,490	277	NLI	entailment, not_entailment
	MRPC	2	22/21	3,668	408	paraphrase	equivalent, not_equivalent
	QQP	2	12/12	363,846	40,431	paraphrase	equivalent, not_equivalent
	STS-B	${\mathcal R}$	11/11	5,749	1,500	sent. similarity	-

Examples

- SST-2: sentiment analysis.
- e.g. S1 = "The movie is ridiculous". Label: negative.
- Manual prompt:

Template	Label words
$< S_1 > $ It was [MASK].	great/terrible

Examples (cont.)

- SNLI: Natural Language Inference
- S1 = "A soccer game with multiple males playing". S2 = "Some men are playing sport". Label: Entailment.
- Manual prompt:

Template	Label words
${<}S_1{>}\ ?$ [mask] , ${<}S_2{>}$	Yes/Maybe/No

Few-shot Learning & Evaluation Protocol

- Training dataset: K=16 examples per class.
- Dev dataset: same size as training dataset.
- Performance measured across 5 random splits of {train, dev} set.

Results

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
	MNLI	MNLI-mm	SNLI	QNLI	RTE	MRPC	QQP	STS-B
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	STS-B (Pear.)
Majority [†]	MNLI (acc) 32.7	MNLI-mm (acc) 33.0	SNLI (acc) 33.8	QNLI (acc) 49.5	RTE (acc) 52.7	MRPC (F1) 81.2	QQP (F1) 0.0	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡]	MNLI (acc) 32.7 50.8	MNLI-mm (acc) 33.0 51.7	SNLI (acc) <i>33.8</i> 49.5	QNLI (acc) 49.5 50.8	RTE (acc) 52.7 51.3	MRPC (F1) <i>81.2</i> 61.9	QQP (F1) 0.0 49.7	STS-B (Pear.) -3.2
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning	MNLI (acc) 32.7 50.8 52.0 (0.7)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6)	SNLI (acc) 33.8 49.5 47.1 (0.6)	QNLI (acc) 49.5 50.8 53.8 (0.4)	RTE (acc) 52.7 51.3 60.4 (1.4)	MRPC (F1) 81.2 61.9 45.7 (6.0)	QQP (F1) 0.0 49.7 36.1 (5.2)	STS-B (Pear.) - -3.2 14.3 (2.8)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0)	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5) 70.0 (3.6)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6) 72.0 (3.1)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1) 77.5 (3.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4) 68.5 (5.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2) 71.1 (5.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3) 78.1 (3.4)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0) 67.7 (5.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3) 76.4 (6.2)

Table 3: Our main results using RoBERTa-large. \dagger : full training set is used (see dataset sizes in Table B.1); \ddagger : no training examples are used; otherwise we use K = 16 (per class) for few-shot experiments. We report mean (and standard deviation) performance over 5 different splits (§3). Majority: majority class; FT: fine-tuning; man: manual prompt (Table 1); auto: automatically searched templates (§5.2); "GPT-3" in-context learning: using the in-context learning proposed in Brown et al. (2020) with RoBERTa-large (no parameter updates).

Effect of Word-Class Mapping

Template	Label words	Accuracy
SST-2 (positive/negative)		mean (std)
$<\!\!S_1\!\!> \operatorname{It}$ was [MASK] .	great/terrible	92.7 (0.9)
$<\!S_1\!> \mathrm{It} \;\mathrm{was}$ [MASK] .	good/bad	92.5 (1.0)
$<\!\!S_1\!\!> \operatorname{It}$ was [MASK] .	cat/dog	91.5 (1.4)
$<\!S_1\!> \operatorname{It}$ was [MASK] .	dog/cat	86.2 (5.4)
$<\!S_1\!> \operatorname{It}$ was [MASK] .	terrible/great	83.2 (6.9)
Fine-tuning	-	81.4 (3.8)

Effect of the Prompt Template

SNLI (entailment/neutral/	mean (std)	
$<\!\!S_1\!\!>$? [MASK] , $<\!\!S_2\!\!>$	Yes/Maybe/No	77.2 (3.7)
${<}S_1{>}$. [MASK] , ${<}S_2{>}$	Yes/Maybe/No	76.2 (3.3)
$<\!\!S_1\!\!>$? [MASK] $<\!\!S_2\!\!>$	Yes/Maybe/No	74.9 (3.0)
$<\!\!S_1\!\!><\!\!S_2\!\!>$ [MASK]	Yes/Maybe/No	65.8 (2.4)
$<\!\!S_2\!\!>$ [MASK] , $<\!\!S_1\!\!>$	Yes/Maybe/No	62.9 (4.1)
$<\!\!S_1\!\!>$? [MASK] , $<\!\!S_2\!\!>$	Maybe/No/Yes	60.6 (4.8)
Fine-tuning	-	48.4 (4.8)

How to design good prompts?

• **BoolQ**: given a passage q and question p, design a prompt for question answering.

For **BoolQ**, given a passage p and question q:

p. Question: q? Answer: <MASK>.

p. Based on the previous passage, q? </br/>MASK>.

Based on the following passage, q? <MASK>. p

with "yes" or "no" as verbalizers for True and False.

How to design good prompts? (cont.)

• WiC: given two sentences S1 and S2, and a word W, design a prompt to determine whether W was used in the same sense in both sentences.

For WiC, given two sentences s_1 and s_2 and a word w, we classify whether w was used in the same sense.

" s_1 " / " s_2 ". Similar sense of "w"? <MASK>.

 $s_1 s_2$ Does w have the same meaning in both sentences? <MASK>.

How to design good prompts? (cont.)

- Manual designing requires some effort.
- The template T and word-class mapping M are not independent.
- Model selection (T, M) is subject to overfitting.

Automatic Selection of Label Words

- Why naively searching all possibilities is not working?
- Generally interactable, exponentially large search space.
- Prone to overfitting. May uncover spurious correlations using few samples.
- For each class c, select top k words according to

$$\operatorname{Top-}_{v \in \mathcal{V}} \left\{ \sum_{x_{\mathrm{in}} \in \mathcal{D}_{\mathrm{train}}^{c}} \log P_{\mathcal{L}} \Big([\mathsf{MASK}] = v \mid \mathcal{T}(x_{\mathrm{in}}) \Big) \right\}$$

• D^c_{train} is training set for the class c.

Automatic Selection of Label Words (cont.)

- Enumerate all combinations of top-k words for different classes.
- Prune by zero-shot accuracy on the training set, select top-n tuples.
- Fine-tune based on top-n candidate and select the best one on the dev set.

Given the manual template: <S> It was [MASK].

Automatic Generation of Templates

- Having fixed M(y), use the T5 model.
 - Trained to fill in multiple tokens.
 - e.g. "Thank you <X> to your party <Y> week" with X = "inviting me" and Y = "last"
- Let $T_g(x_{in}, y)$ be the formulation for making the T5 input:

$$\begin{array}{l} \longrightarrow < X > \mathcal{M}(y) < Y > < S_1 >, \\ \longrightarrow < S_1 > < X > \mathcal{M}(y) < Y >, \\ , \longrightarrow < S_1 > < X > \mathcal{M}(y) < Y > < S_2 >. \\ \sum_{(x_{\mathrm{in}},y) \in \mathcal{D}_{\mathrm{train}}} \log P_{\mathrm{T5}}(\mathcal{T} \mid \mathcal{T}_{\mathrm{g}}(x_{\mathrm{in}},y)) \\ \sum_{j=1}^{|\mathcal{T}|} \sum_{(x_{\mathrm{in}},y) \in \mathcal{D}_{\mathrm{train}}} \log P_{\mathrm{T5}}(t_j \mid t_1, ..., t_{j-1}, \mathcal{T}_{\mathrm{g}}(x_{\mathrm{in}},y)) \end{array}$$

Automatic Generation of Templates (cont.)

- Use a wide (b = 100) beam search to decode <X> and <Y>.
- Finally, fine-tune the model on top-p templates and pick the one with best dev accuracy. c

Demonstrations

Demonstrations (cont.)

Improved: Selective Sampling, ie. for this example sample from then positive class 😎

 \vdash Demonstration for label:positive \dashv

• How to select demo samples?

Ablation Studies

Ablation Studies (cont.)

