Large Language Models

Parameter Efficient Fine Tuning I

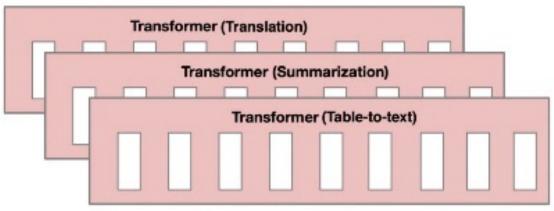
Mohammad Hossein Rohban

Fall 2023

Courtesy: Most of the slides are adopted from the course COS 597G and the paper "Parameter-Efficient Transfer Learning for NLP" by Houlsby et al 2019, and AdapterHub and AdapterFusion by J. Pfeiffer et. al

Motivation

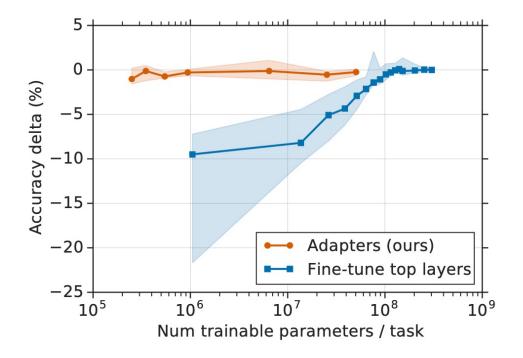
- Large enough training set makes full fine tuning (on all weights) really good.
- But this needs enormous separate models to be stored.
 - For each task
 - For each user ...
- Fine tuning (FT) on a subset of the parameters is the way to go: parameter-efficiency.



Fine-tuning

Let's discuss

- Which subset of parameter should be selected for FT?
- Last few layers?
- Turns out to be inefficient.
- A lot of weights needed to reach full FT accuracy.
- Only some layers (variable FT)?

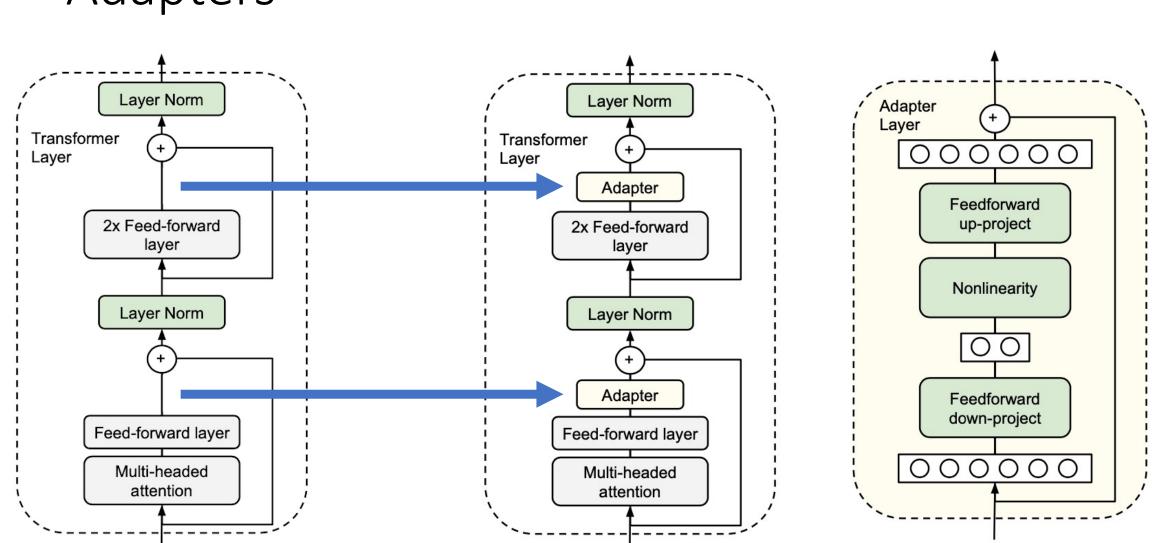


Adapters comes in handy!

• Introduced in ICML 2019.

Parameter-Efficient Transfer Learning for NLP

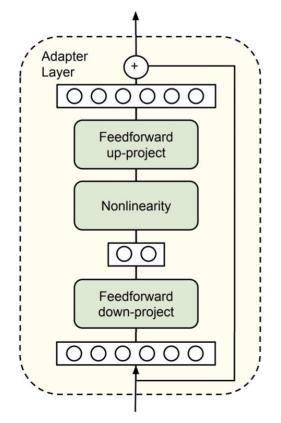
Neil Houlsby¹ Andrei Giurgiu^{1*} Stanisław Jastrzębski^{2*} Bruna Morrone¹ Quentin de Laroussilhe¹ Andrea Gesmundo¹ Mona Attariyan¹ Sylvain Gelly¹



Adapters

Adapters (cont.)

- Bottleneck architecture.
- Inserted in both sublayers; right before the skip connection.
- The adapter has a skip connection itself. Why?
- New layer normalization parameters per task as well.
- All other weights are frozen.
- Near identity initialization of the adapter. How? Why?



Results

	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	MNLI _m	MNLI _{mm}	QNLI	RTE	Total
BERTLARGE	$9.0 \times$	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	1.3 imes	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	1.2 imes	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

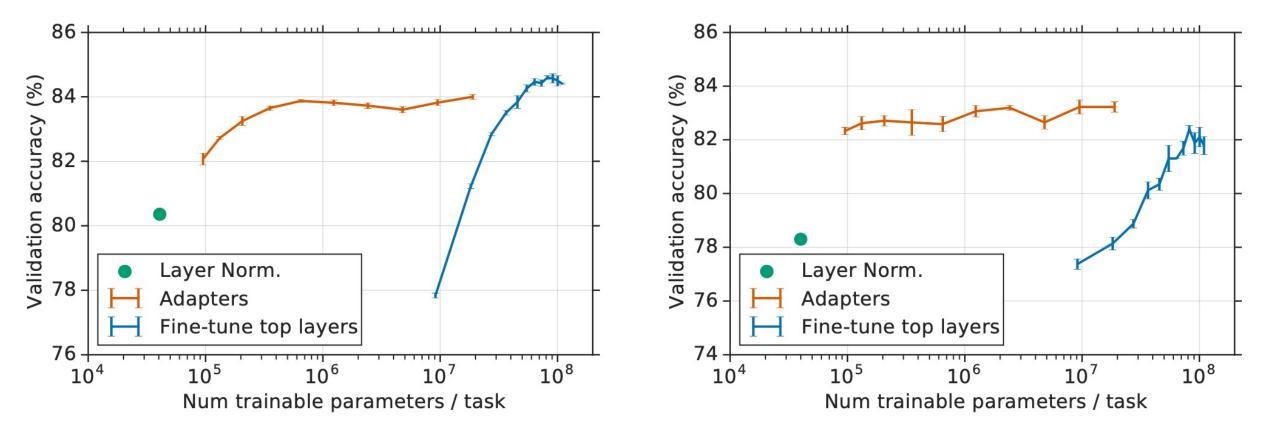
Results (cont.)

Dataset	No BERT	BERT _{BASE}	BERT _{BASE}	BERT _{BASE}
	baseline	Fine-tune	Variable FT	Adapters
20 newsgroups	91.1	92.8 ± 0.1	92.8 ± 0.1	91.7 ± 0.2
Crowdflower airline	84.5	83.6 ± 0.3	84.0 ± 0.1	84.5 ± 0.2
Crowdflower corporate messaging	91.9	92.5 ± 0.5	92.4 ± 0.6	92.9 ± 0.3
Crowdflower disasters	84.9	85.3 ± 0.4	85.3 ± 0.4	84.1 ± 0.2
Crowdflower economic news relevance	81.1	82.1 ± 0.0	78.9 ± 2.8	82.5 ± 0.3
Crowdflower emotion	36.3	38.4 ± 0.1	37.6 ± 0.2	38.7 ± 0.1
Crowdflower global warming	82.7	84.2 ± 0.4	81.9 ± 0.2	82.7 ± 0.3
Crowdflower political audience	81.0	80.9 ± 0.3	80.7 ± 0.8	79.0 ± 0.5
Crowdflower political bias	76.8	75.2 ± 0.9	76.5 ± 0.4	75.9 ± 0.3
Crowdflower political message	43.8	38.9 ± 0.6	44.9 ± 0.6	44.1 ± 0.2
Crowdflower primary emotions	33.5	36.9 ± 1.6	38.2 ± 1.0	33.9 ± 1.4
Crowdflower progressive opinion	70.6	71.6 ± 0.5	75.9 ± 1.3	71.7 ± 1.1
Crowdflower progressive stance	54.3	63.8 ± 1.0	61.5 ± 1.3	60.6 ± 1.4
Crowdflower US economic performance	75.6	75.3 ± 0.1	76.5 ± 0.4	77.3 ± 0.1
Customer complaint database	54.5	55.9 ± 0.1	56.4 ± 0.1	55.4 ± 0.1
News aggregator dataset	95.2	96.3 ± 0.0	96.5 ± 0.0	96.2 ± 0.0
SMS spam collection	98.5	99.3 ± 0.2	99.3 ± 0.2	95.1 ± 2.2
Average	72.7	73.7	74.0	73.3
Total number of params		$17 \times$	9.9 imes	$1.19 \times$
Trained params/task		100%	52.9%	1.14%

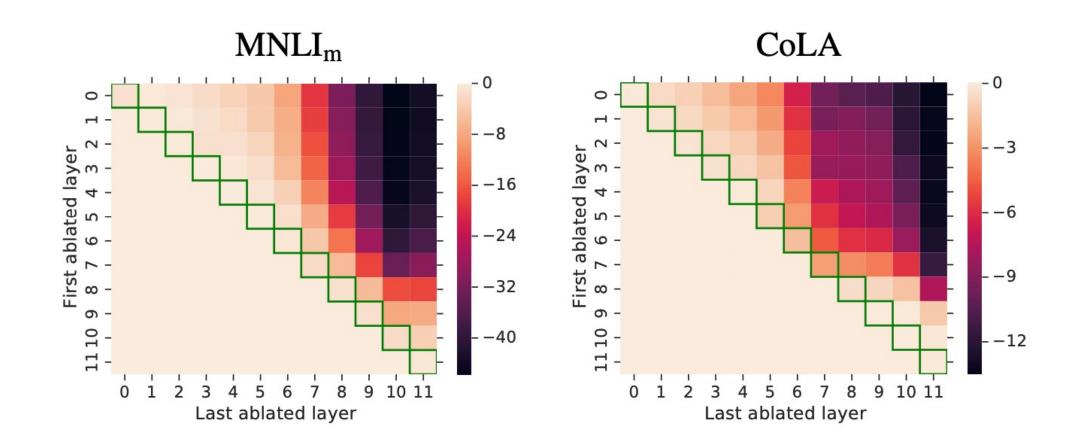
Results (cont.)

 $MNLI_m(BERT_{BASE})$

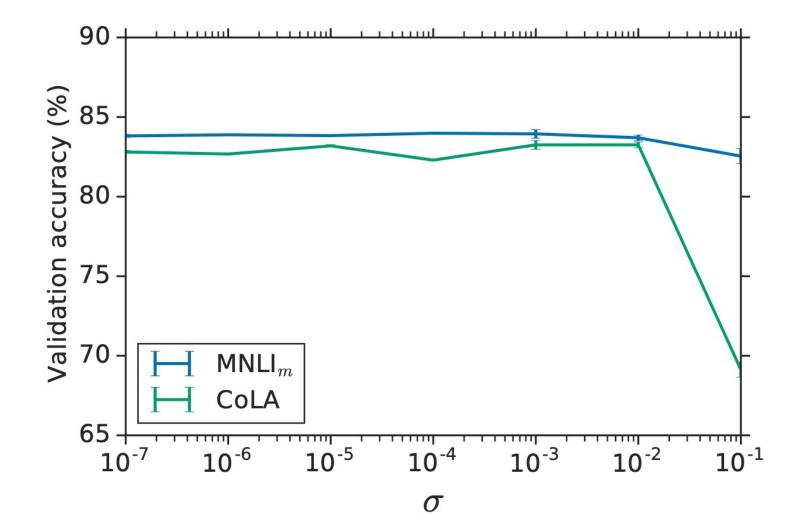
CoLA (BERT_{BASE})



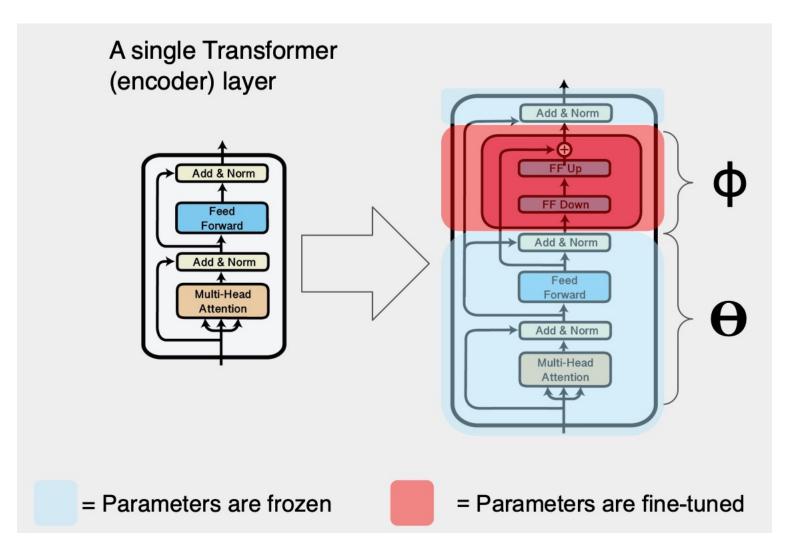
Most impactful layers?



Weight initialization impact?



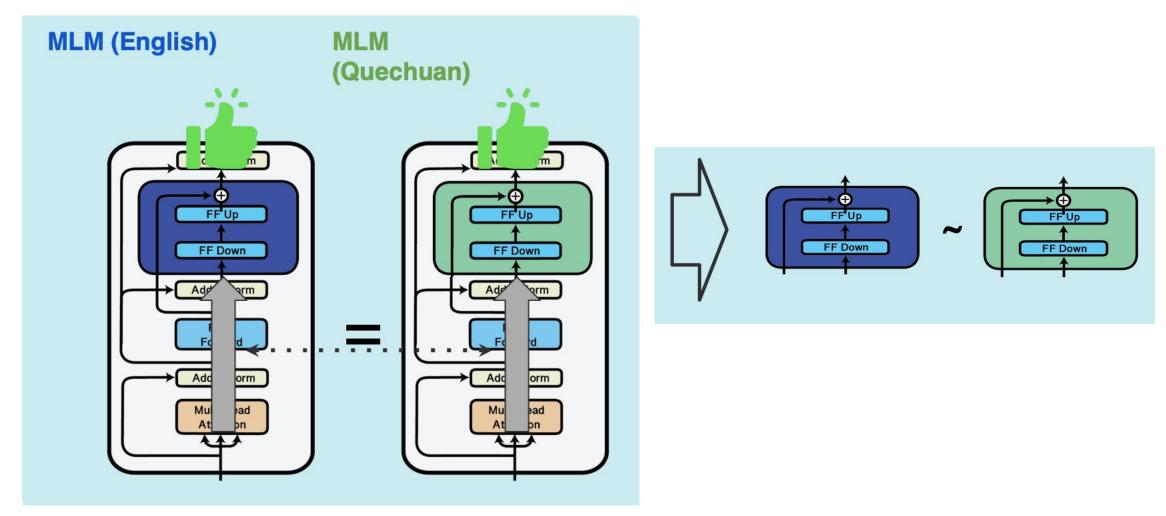
Other versions of adapters (Pfeiffer et al.)



Modularity of Representation

- Surrounding parameters of an Adapter are fixed.
- What are the implications?
- At each layer the Adapter is forced to learn an output representation that is compatible with the subsequent transformer layers.

Modularity of Representation (cont.)



AdapterHub

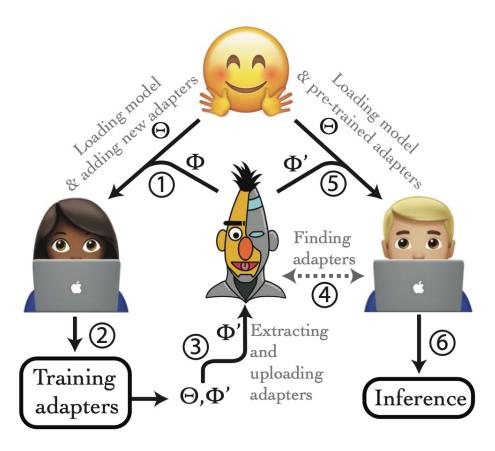


Figure 1: The AdapterHub Process graph. Adapters Φ are introduced into a pre-trained transformer Θ (step (1)) and are trained (2). They can then be extracted and open-sourced (3) and visualized (4). Pre-trained adapters are downloaded on-the-fly (5) and stitched into a model that is used for inference (6).

```
1 from transformers import AutoModelForSequenceClassification, AdapterType
2 model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
3 model.add_adapter("sst-2", AdapterType.text_task, config="pfeiffer")
4 model.train_adapter(["sst-2"])
5 # Train model ...
6 model.save_adapter("adapters/text-task/sst-2/", "sst-2")
7 # Push link to zip file to AdapterHub ...
```

Figure 2: ① Adding new adapter weights Φ to pre-trained RoBERTa-Base weights Θ (line 3), and freezing Θ (line 4). ③ Extracting and storing the trained adapter weights Φ' (line 6).

1 from transformers import AutoModelForSequenceClassification, AdapterType
2 model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
3 model.load_adapter("sst-2", config="pfeiffer")

Figure 4: 5 After the correct adapter has been identified by the user on the explore page of AdapterHub.ml, they can load and stitch the pre-trained adapter weights Φ' into the transformer Θ (line 3).

Is it all about reducing # of parameters?

- We also seek transfer of knowledge across the tasks!
- Want the model to work on low-resources languages.
- Can Adapters help mitigate these challenges?

AdapterFusion: Non-Destructive Task Composition for Transfer Learning

Jonas Pfeiffer¹, Aishwarya Kamath², Andreas Rücklé¹, Kyunghyun Cho^{2,3}, Iryna Gurevych¹ ¹Ubiquitous Knowledge Processing Lab (UKP Lab), Technical University of Darmstadt ²New York University ³CIFAR Associate Fellow pfeiffer@ukp.tu-darmstadt.de

Knowledge sharing across task

- Sequential Learning of tasks
 - Catastrophic Forgetting
- Multi-task Learning setup
 - Need to have access to all tasks at once
 - Adding a new task would be a pain in the neck
 - Overfit to low-resource tasks
 - Underfit to high-resource tasks

Problem Definition

- We are given $D_0 :=$ Large corpus of unlabelled text $L_0 :=$ Masked language modelling loss $\Theta_0 \leftarrow \underset{\Theta}{\operatorname{argmin}} L_0(D_0; \Theta)$
- And also

$$C = \{(D_1, L_1), \dots, (D_N, L_N)\}$$

 The aim is to leverage C to improve single-task solving of C_m = (D_m, L_m) with m being in {1, ..., N}

AdapterFusion Method

• Step 1: Train an Adapter for each task separately (single-task adapters)

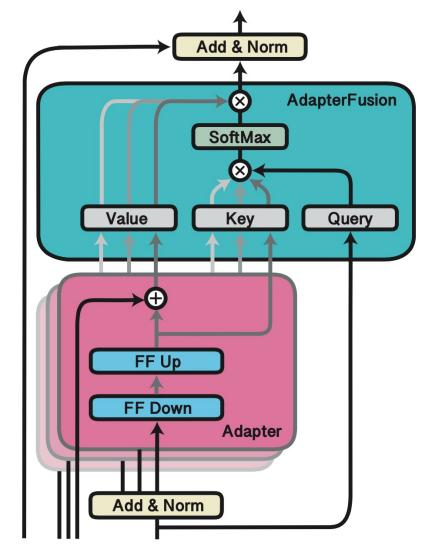
$$\Phi_n \leftarrow \operatorname*{argmin}_{\Phi} L_n(D_n; \Theta_0, \Phi)$$

• Step 2: Fix both the parameters Θ (base transformer) and Φ_1, \ldots, Φ_N (task adapters) introduce parameters Ψ_m to combine task adapters for the m-th task.

$$\Psi_m \leftarrow \underset{\Psi}{\operatorname{argmin}} L_m(D_m; \Theta, \Phi_1, \dots, \Phi_N, \Psi)$$

AdapterFusion Method (cont.)

- Ψ_m = Key, Value and Query matrices at layer I, i.e. K_I, V_I and Q_I.
- At each layer, the output of the feed-forward sub-layer is taken as the query vector.
- The output of each adapter z_{l,t} is used as input to both the value and key transformations.



AdapterFusion Method (cont.)

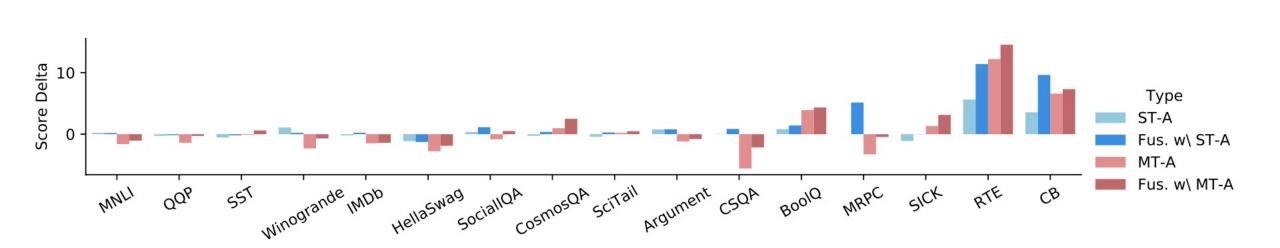
$$\begin{aligned} \mathbf{s}_{l,t} &= \operatorname{softmax}(\mathbf{h}_{l,t}^{\top}\mathbf{Q}_{l} \otimes \mathbf{z}_{l,t,n}^{\top}\mathbf{K}_{l}), n \in \{1, ..., N\} \\ \mathbf{z}_{l,t,n}' &= \mathbf{z}_{l,t,n}^{\top}\mathbf{V}_{l}, n \in \{1, ..., N\} \\ \mathbf{Z}_{l,t}' &= [\mathbf{z}_{l,t,0}', ..., \mathbf{z}_{l,t,N}'] \\ \mathbf{o}_{l,t} &= \mathbf{s}_{l,t}^{\top}\mathbf{Z}_{l,t}' \end{aligned}$$

Where \otimes represents the dot product and $[\cdot, \cdot]$ indicates the concatenation of vectors.

Results

Dataset	Head	Full	ST-A	MT-A	F. w/ ST-A	F. w/ MT-A	ST-A ^{Houlsby}
MNLI	54.59	84.10	84.32	82.49 ±0.49	84.28	83.05	84.13
QQP	76.79	90.87	90.59	$89.47 \pm 0.60 $	90.71	90.58	90.63
SST	85.17 ±0.45	$92.39 \pm 0.22 $	$91.85 \pm 0.41 $	$92.27 \pm 0.71 $	$92.20 \pm 0.18 $	93.00 ±0.20	$92.75 \hspace{0.1in} \pm 0.37$
WGrande	51.92 ±0.35	60.01 ± 0.08	61.09 ±0.11	57.70 ±1.40	60.23 ±0.31	59.32 ± 0.30	$59.32 \hspace{0.1in} \pm 1.33$
IMDB	85.05 ±0.22	94.05 ±0.21	$93.85 \pm 0.07 $	$92.56 \pm 0.54 $	93.82 ± 0.39	92.66 ± 0.32	93.96 ± 0.22
HSwag	34.17 ± 0.27	39.25 ± 0.76	38.11 ± 0.14	$36.47 \pm 0.98 $	$37.98 \pm 0.01 $	37.36 ± 0.10	38.65 ± 0.25
SocIQA	50.33 ±2.50	62.05 ±0.04	62.41 ±0.11	61.21 ±0.89	63.16 ±0.24	62.56 ±0.10	$62.73 \hspace{0.1in} \pm 0.53$
CosQA	50.06 ±0.51	$60.28 \pm 0.40 $	60.01 ± 0.02	$61.25 \pm 0.90 $	60.65 ± 0.55	62.78 ±0.07	$61.37 \hspace{0.1in} \pm 0.35$
SciTail	85.30 ±2.44	$94.32 \pm 0.11 $	$93.90 \pm 0.16 $	$94.53 \pm 0.43 $	94.04 ± 0.23	94.79 ±0.17	$94.07 \hspace{0.1in} \pm 0.39$
Argument	$70.61 \pm 0.59 $	$76.87 \pm 0.32 $	77.65 ±0.34	$75.70 \pm 0.60 $	77.65 ±0.21	76.08 ± 0.27	77.44 ± 0.62
CSQA	41.09 ±0.27	58.88 ± 0.40	58.91 ± 0.57	53.30 ±2.19	59.73 ±0.54	56.73 ±0.14	60.05 ±0.36
BoolQ	63.07 ±1.27	$74.84 \pm 0.24 $	75.66 ± 1.25	$78.76 \pm 0.76 $	76.25 ± 0.19	79.18 ±0.45	$76.02 \hspace{0.1in} \pm 1.13$
MRPC	71.91 ± 0.13	$85.14 \pm 0.45 $	85.16 ± 0.52	81.86 ± 0.99	90.29 ±0.84	84.68 ± 0.32	86.66 ±0.81
SICK	76.30 ± 0.71	87.30 ± 0.42	$86.20 \pm 0.00 $	88.61 ±1.06	87.28 ±0.99	90.43 ±0.30	86.12 ±0.54
RTE	61.37 ±1.17	$65.41 \pm 0.90 $	71.04 ± 1.62	77.61 ±3.21	$76.82 \pm 1.68 $	79.96 ±0.76	$69.67 \hspace{0.1in} \pm 1.96$
CB	68.93 ±4.82	82.49 ± 2.33	86.07 ±3.87	89.09 ±1.15	92.14 ±0.97	89.81 ± 0.99	87.50 ±4.72
Mean	64.17	75.51	76.05	75.80	77.33	77.06	76.32

Results (cont.)



Results (cont.)

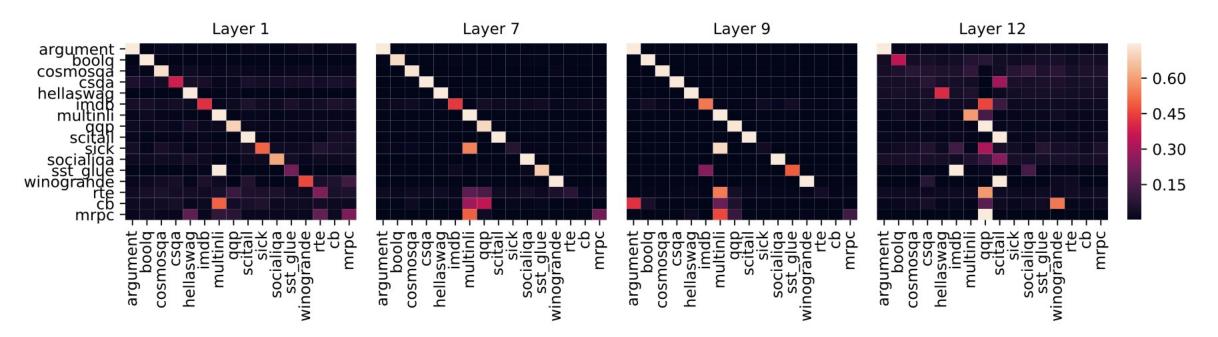


Figure 4: AdapterFusion activations of pretrained **ST-Adapters**. Rows indicate the target task m, columns indicate adapters n. We assume that the softmax activation for $\Phi_{n,l}$ is high if the information of adapter n is useful for task m. For our analysis, we calculate the softmax activation for each adapter $\Phi_{n,l}$, where $n \in \{1, \ldots, N\}$, and average over all activations within the same layer l calculated over all instances in the development set.

Surprise: Solve NER for a low-resource Lang.

- Given a general corpus of a low-resource language: Quechuan.
- No annotated dataset of NER is available in this language.
- Do a quick research to find a solution for this problem.