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Motivation

• Large enough training set makes full 
fine tuning (on all weights) really 
good.
• But this needs enormous separate 

models to be stored.
• For each task
• For each user … 

• Fine tuning (FT) on a subset of the 
parameters is the way to go: 
parameter-efficiency.
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Let’s discuss

• Which subset of parameter should be 
selected for FT? 
• Last few layers?
• Turns out to be inefficient.
• A lot of weights needed to reach full FT 

accuracy.
• Only some layers (variable FT)? 
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Adapters comes in handy!

• Introduced in ICML 2019.

4



Adapters
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Adapters (cont.)

• Bottleneck architecture.
• Inserted in both sublayers; right before the skip connection. 
• The adapter has a skip connection itself. Why?
• New layer normalization parameters per task as well.
• All other weights are frozen. 
• Near identity initialization of the adapter. How? Why?
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Results
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Results (cont.)
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Results (cont.)
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Most impactful layers?
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Weight initialization impact?
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Other versions of adapters (Pfeiffer et al.)
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Modularity of Representation

• Surrounding parameters of an Adapter are fixed.
• What are the implications?
• At each layer the Adapter is forced to learn an output representation 

that is compatible with the subsequent transformer layers. 
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Modularity of Representation (cont.)
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AdapterHub
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Is it all about reducing # of parameters?

• We also seek transfer of knowledge across the tasks!
• Want the model to work on low-resources languages.
• Can Adapters help mitigate these challenges?
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Knowledge sharing across task

• Sequential Learning of tasks
• Catastrophic Forgetting 

• Multi-task Learning setup
• Need to have access to all tasks at once 
• Adding a new task would be a pain in the neck 
• Overfit to low-resource tasks
• Underfit to high-resource tasks
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Problem Definition

• We are given

• And also

• The aim is to leverage C to improve single-task solving of Cm = (Dm, Lm)
with m being in {1, …, N}
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AdapterFusion Method

• Step 1: Train an Adapter for each task separately (single-task 
adapters)

• Step 2: Fix both the parameters Θ (base transformer) and Φ!, … ,Φ"
(task adapters) introduce parameters Ψ# to combine task adapters 
for the m-th task.
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AdapterFusion Method (cont.)
• Ψ# = Key, Value and Query 

matrices at layer l, i.e. Kl, Vl and 
Ql.
• At each layer, the output of the 

feed-forward sub-layer is taken 
as the query vector.
• The output of each adapter zl,t is 

used as input to both the value
and key transformations.
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AdapterFusion Method (cont.)
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Results
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Results (cont.)
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Results (cont.)
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Surprise: Solve NER for a low-resource Lang.

• Given a general corpus of a low-resource language: Quechuan.
• No annotated dataset of NER is available in this language. 
• Do a quick research to find a solution for this problem. 
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