Large Language Models

Large Multi-modal Models (LMMs)

M. Soleymani Sharif University of Technology Fall 2023

Outline

- Instruction-following LMMs
- Multi-modal agents
- LLMs as planner in embodied agents

Tasks without Instruction

Input

Output

Old habits die hard.

ترک عادت موجب مرض است.

Welcome to the Large Language Models course at Sharif University of Technology! This course delves into the fascinating world of LLMs, a pivotal area of artificial intelligence that has transformed the field of natural language processing (NLP). Over the semester, we will explore the foundations and practical applications of these cutting-edge models. Sharif University's LLM course: explore foundations and applications of LLMs

Task instructions are implicit in the data.

Hard to generalize to new tasks in zero-shot manner.

Instruction

Instruction

Input

Output

Translate English into Farsi

Old habits die hard.

ترک عادت موجب مرض است.

Summarize in just 10 words to make the message even more brief. Welcome to the Large Language Models course at Sharif University of Technology! This course delves into the fascinating world of LLMs, a pivotal area of artificial intelligence that has transformed the field of natural language processing (NLP). Over the semester, we will explore the foundations and practical applications of these cutting-edge models. Sharif University's LLM course: explore foundations and applications of LLMs

Instruction Tuning: Transfer to new tasks

Instruction

Input

Output

Summarize in Farsi to make the message more brief.

Welcome to the Large Language Models course at Sharif University of Technology! This course delves into the fascinating world of LLMs, a pivotal area of artificial intelligence that has transformed the field of natural language processing (NLP). Over the semester, we will explore the foundations and practical applications of these cutting-edge models. درس LLMs دانشگاه شریف: کاوش پایهها و کاربردهای LLMs

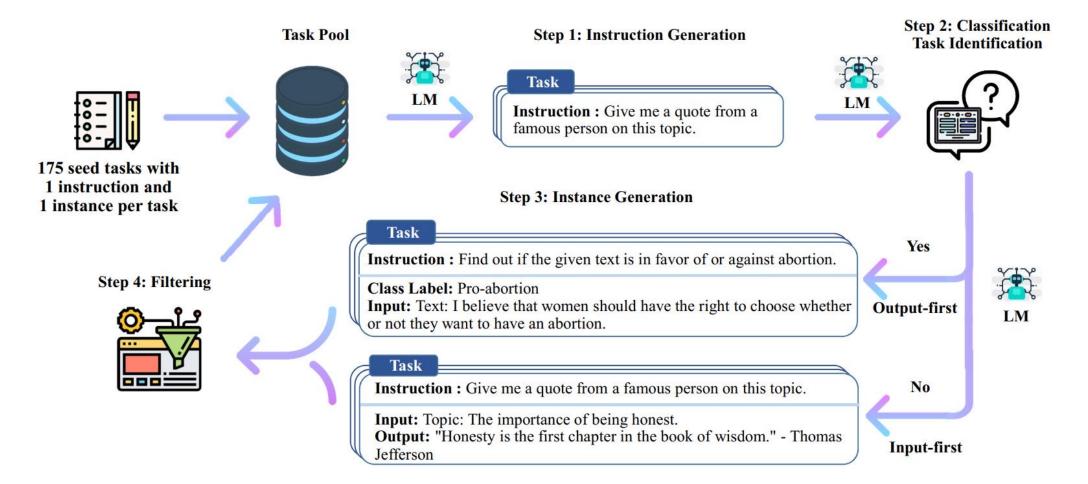
Example of LMMs

	Flamingo	BLIP2			
	Image: Second	Vision-and-Language Representation Learning			
Language Model	Pre-trained: 70B Chinchilla	Pre-trained: FLAN-T5/OPT			
	Perceiver Resampler	Q-Former: Lightweight			
Connection Module	Gated Cross-attention + Dense	Querying Transformer			
Vision Encoder	Pre-trained: Nonrmalizer-Free ResNet (NFNet)	Contrastive pre-trained: EVA/CLIP			

Instruction Tuning

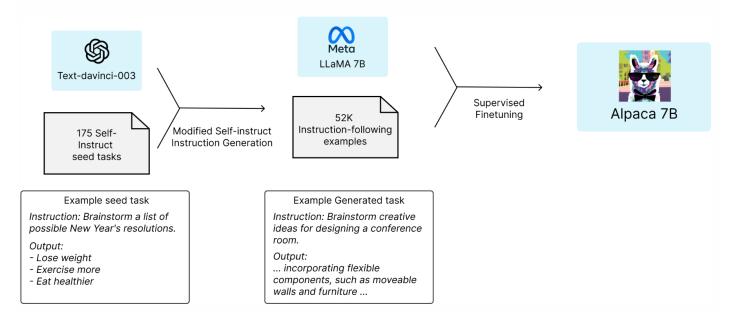
- Instruction-following data is expensive to collect
- What about a human-machine collecting?
 - More scalable

Self-Instruct for Instruction Tuning of LLMs



Self-Instruct for Instruction Tuning of LLMs

- Facilitates the preparation of instruction-following examples by employing a semi-automated generation of them
- Example: Alpaca produces 52K high-quality instruction-following demonstrations (using text-davinci-003) to fine-tune LLaMA

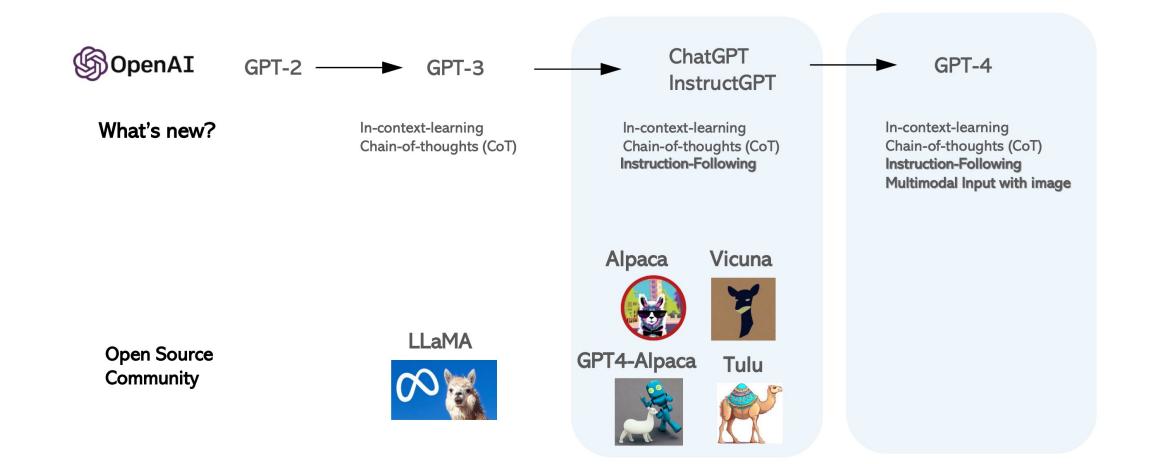


Taori et al., "Alpaca: A Strong, Replicable Instruction-Following Model", 2023

Self-instruct with Strong LLMs

Seed Examples — In-Context Learning — New Machine-Generated Examples

Self-instruct in Open-source LLMs



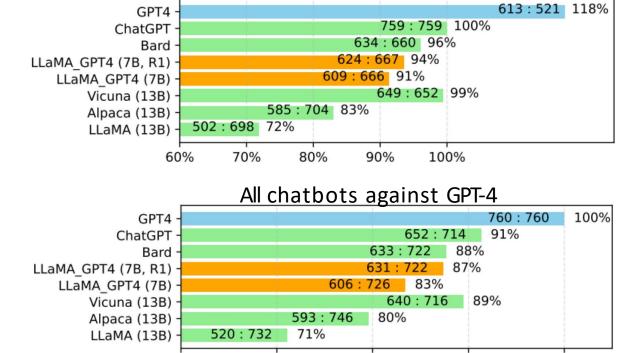
Source: Chunyuan Li's Slides. CVPR 2023 Tutorial

Comparison of Chatbots by GPT-4

Evaluation Metric: Ask GPT-4 to rate the two model responses (1-10), then compute the ratio, i.e. relative score

Findings: A Very Consistent Evaluation Metric!

Opensourced Chatbots mimicked commercial ones



70%

60%

All chatbots against ChatGPT

80%

90%

Source: Chunyuan Li's Slides, CVPR 2023 Tutorial

100%

MultiModal GPT-4

- Model Details: Unknown
- Capability: Strong zero-shot visual understanding & reasoning on many user-oriented tasks in the wild
- How can we build Multimodal GPT-4 like models?

GPT-4 visual input example, Extreme Ironing:

User What is unusual about this image?

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

GPT-4 visual input example, Chicken Nugget Map:

User Can you explain this meme?

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

GPT-assisted Visual Instruction Data Generation

- Rich Symbolic Representations of Images
- In-context-learning with a few manual examples
- \rightarrow Text-only GPT-4

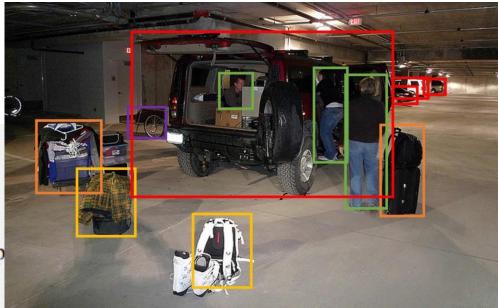
Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage. Luggage surrounds a vehicle in an underground parking area People try to fit all of their luggage in an SUV.

The sport utility vehicle is parked in the public garage, being packed for a trip Some people with luggage near a van that is transporting it.

Context type 2: Boxes

person: [0.681, 0.242, 0.774, 0.694], person: [0.63, 0.222, 0.686, 0.516], person: [0.444, 0.233, 0.487, 0.34], backpack: [0.384, 0.696, 0.485, 0.914], backpack: [0.755, 0.413, 0.846, 0.692], suitcase: [0.758, 0.413, 0.845, 0.69], suitcase: [0.1, 0.497, 0.173, 0.579], bicycle: [0.282, 0.363, 0.327, 0.442], car: [0.786, 0.25, 0.848, 0.322], car: [0.783, 0.27, 0.827, 0.335], car: [0.86, 0.254, 0.891, 0.3], car: [0.261, 0.101, 0.787, 0.626]



GPT-assisted Visual Instruction Data Generation

Three type of instruction-following responses

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV).

Question: Where is the vehicle parked?

Answer: The vehicle is parked in an underground parking area, likely in a public garage.

Question: What are the people in the image doing?

Answer: The people are trying to fit all of their luggage into the SUV, likely preparing for a trip. **Response type 2: detailed description**

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There are three people in the scene, with one person standing closer to the left side of the vehicle, another person in the middle, and the third person on the right side. They are all working together to pack their luggage into the SUV for a trip.

In the parking area, various luggage items are scattered around the vehicle. There are two backpacks, one located near the left rear wheel and the other closer to the right side of the vehicle. Additionally, there are two suitcases, one on the right side of the car and another further away near the center of the parking area. A bicycle can also be seen on the left side of the vehicle.

Other cars are parked around the main SUV, with one car positioned behind it and slightly to the left, another behind and slightly to the right, and the third car further behind on the right side.

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area, surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks to be packed, which suggests that the group has a significant amount of belongings to accommodate. They might have to strategize and arrange the luggage efficiently to ensure that everything fits properly into the vehicle. Additionally, they need to consider the comfort of the passengers and visibility while driving, so the placement of the luggage must not obstruct the driver's view or make the passengers uncomfortable during the trip.

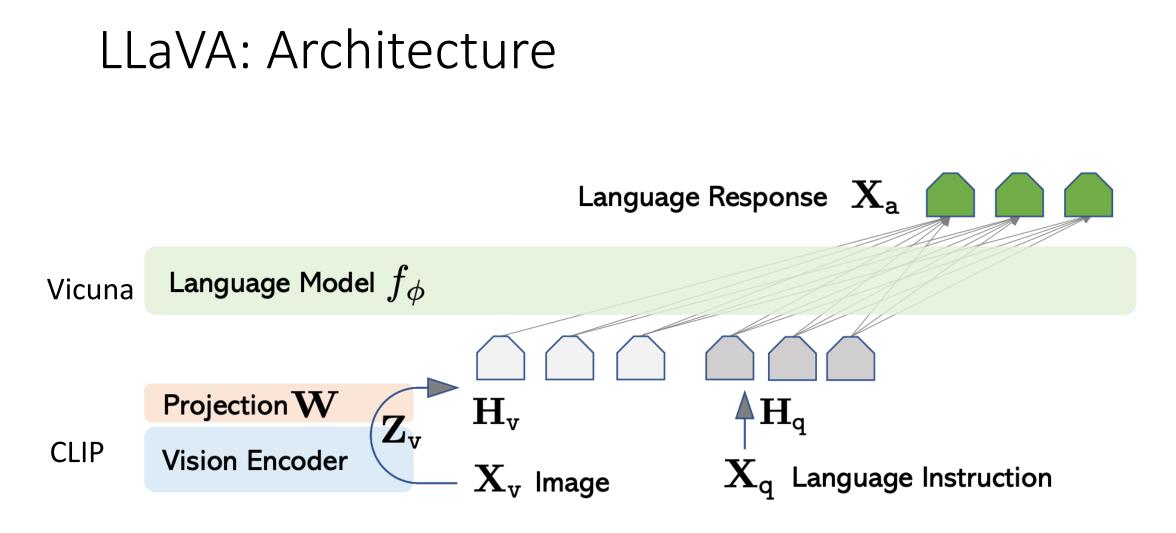


Example: Instructions for Detailed Image Description

- "Describe the following image in detail"
- "Provide a detailed description of the given image"
- "Give an elaborate explanation of the image you see"
- "Share a comprehensive rundown of the presented image"
- "Offer a thorough analysis of the image"
- "Explain the various aspects of the image before you"
- "Clarify the contents of the displayed image with great detail"
- "Characterize the image using a well-detailed description"
- "Break down the elements of the image in a detailed manner"
- "Walk through the important details of the image"
- "Portray the image with a rich, descriptive narrative"
- "Narrate the contents of the image with precision"
- "Analyze the image in a comprehensive and detailed manner"
- "Illustrate the image through a descriptive explanation"
- "Examine the image closely and share its details"
- "Write an exhaustive depiction of the given image"

LLaVA: Large Language-and-Vision Assistant

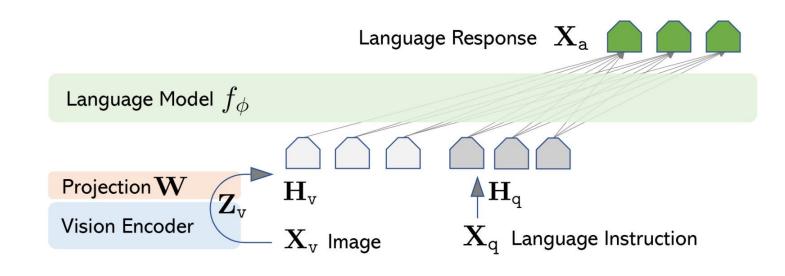
- The available multimodal instruction-following data is limited
 - time-consuming collection
 - less well-defined when human crowd-scouring is considered.
- LLaVA is the first visual instruction-following method
- LLaVA fine-tunes the whole LLM on 150K high-quality multi-modal instruction data generated by GPT-4.
 - expanding the original captions of COCO with handwritten seed instructions using GPT-4 to provide descriptions and multi-round conversations.



The vision encoder converts input images into features Linear projection layer convert these features into a space compatible with the LLM.

Liu et al., "Visual Instruction Tuning", NeurIPS 2023

LLaVA: Training



Two-stage Training

•Stage 1: Pre-training for Vision-language Alignment.

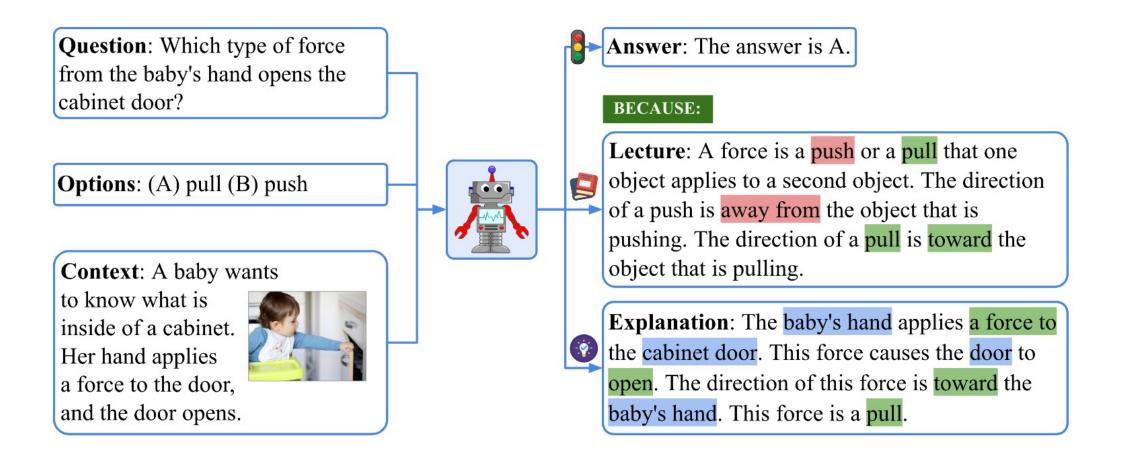
Only the projection matrix is updated, based on a subset of CC3M.

•Stage 2: Fine-tuning End-to-End. Both the projection matrix and LLM are finetuned on curated dataset

•Visual Chat: Generated multimodal instruction data for daily user-oriented applications.

•Science QA: Multimodal reasoning dataset for the science domain.

ScienceQA



Visual input example, Extreme Ironing:

Carde III III III

Strong Visual Reasoning Ability

Example 1: Extreme Ironing

User	Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg What is unusual about this image?
LLaVA	The unusual aspect of this image is a man ironing clothes on the back of a minivan or van. This is not a typical place to perform this activity, as one would usually iron clothes in a more stationary and safe location, such as a home, using a regular ironing board. The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how the man is able to maintain balance and stability while ironing clothes in such an unstable environment.
20	[Start a new conversation, and clear the history]
User LLaVA	What's happening in the scene? The image depicts a man standing on top of a yellow SUV in a busy city street. He is holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are two other people in the vicinity, one close to the man on the car and another further away. The man on the ladder appears to be attracting attention due to his unconventional choice of ironing his clothes on top of a moving car. The city street around him is bustling with activity, adding to the unique nature of the scene.
User GPT-4 [34]	What is unusual about this image? The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.
User BLIP-2	What is unusual about this image? a man is sitting on the back of a yellow cab
User OpenFlamingo	What is unusual about this image? The man is drying his clothes on the hood of his car.

11

Liu et al., "Visual Instruction Tuning", NeurIPS 2023

Visual input example, Chicken Nugget Map:

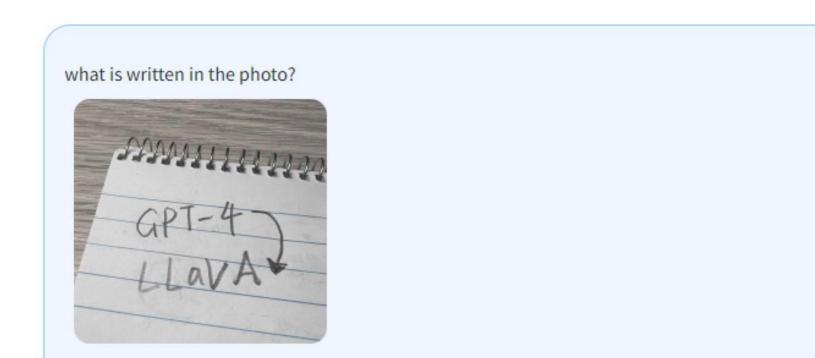
Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

User BLIP-2	Can you explain this meme in detail? sometimes i just look at pictures of the earth from space and marvel how beautiful it is
User GPT-4 [32]	Can you explain this meme? This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets. The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world. The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.
User LLaVA	Can you explain this meme in detail? The meme in the image is a creative and humorous take on food, with a focus on chicken nuggets, as the center of the universe. The meme begins with the phrase "Sometimes I just look at pictures of the Earth from space and I marvel at how beautiful it all is" The main image features a tray of cooked chicken nuggets, with the chicken pieces positioned to resemble the continents and islands on a world map. The meme playfully suggests that the chicken nuggets represent the Earth, and the various locations depicted in the photo are actually chicken nugget versions of different places. The punchline of the meme appears in smaller text at the bottom, reading "I mean, it's not the real Earth, but how beautiful it is all is." This lighthearted and entertaining meme combines food and humor, using the image of chicken nuggets to create a funny and imaginative representation of the world.

User Can you explain this meme in detail? OpenFlamingo It's a picture of a chicken nugget on the International Space Station.

Strong Visual Reasoning Ability

Example 2: Chicken Nugget Map



Strong OCR Ability

Example 3: LLaVA

In the photo, there is written "Llava" which is presumably an abbreviation for a location or other identifier.

Mathad	Subject		Context Modality			Grade				
Method	NAT	SOC	LAN	TXT	IMG	ŇO	G1-6	G7-12	Average	
Representative & SoTA methods with numbers reported in the literature										
Human [30]	90.23	84.97	87.48	89.60	87.50	88.10	91.59	82.42	88.40	
GPT-3.5 [30]	74.64	69.74	76.00	74.44	67.28	77.42	76.80	68.89	73.97	
GPT-3.5 w/ CoT [30]	75.44	70.87	78.09	74.68	67.43	79.93	78.23	69.68	75.17	
LLaMA-Adapter [55]	84.37	88.30	84.36	83.72	80.32	86.90	85.83	84.05	85.19	
$MM-CoT_{Base}$ [57]	87.52	77.17	85.82	87.88	82.90	86.83	84.65	85.37	84.91	
$MM-CoT_{Large}$ [57]	95.91	82.00	90.82	95.26	88.80	92.89	92.44	90.31	91.68	
Results with our own experiment runs										
GPT-4	84.06	73.45	87.36	81.87	70.75	90.73	84.69	79.10	82.69	
LLaVA	90.36	95.95	88.00	89.49	88.00	90.66	90.93	90.90	90.92	
LLaVA+GPT-4 (complement)	90.36	95.50	88.55	89.05	87.80	91.08	92.22	88.73	90.97	
LLaVA+GPT-4 (judge)	91.56	96.74	91.09	90.62	88.99	93.52	92.73	92.16	92.53	

Table 6: Results (accuracy %) on Science QA dataset. Question classes: NAT = natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12.

Emerging Topics

	March	April	May		IdealGPT	June		
LLaMA	Alpaca Vic		Videochat InstructBLI InternGPT LMEye Otter <u>OCR</u> MultiModI-GPT -Adapter V2	<u>POPE</u>		1	MIMIC-IT Video-LL L <u>LAM</u>	aMA
Flamingo	GPT4	LLaVA mPlug-	Owl	SpeechG	PT C	Cont <mark>extua</mark>		<u>LVLM-eHub</u>
	warch warch	50 April 16 April 27 M	as was way	way	Way	June	e June	•

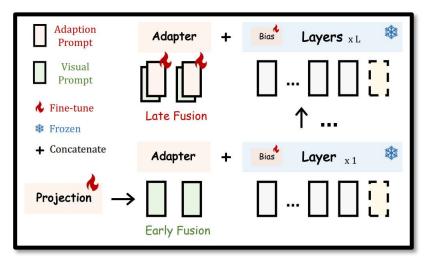
Source: Chunyuan Li's CVPR 2023 Tutorial

Mini-GPT4

- Mini-GPT4 follows BLIP-2's architecture but replaces the language decoder with Vicuna, which better supports longer responses and multi-round conversations.
- MiniGPT-4 connects a frozen visual encoder and an LLM by pre-training on 134 million image-text pairs
 - MiniGPT4 constructs its instruction following dataset by combining Conceptual Caption, SBU, and LAION with handwritten instruction templates.
- Then improves the model's performance by further fine-tuning on a well-aligned image-text dataset.

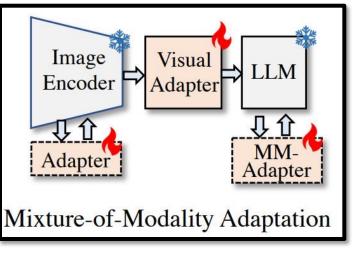
Main Categories of Instruction Tuned Models

- Efficient Adaptation: LLaMA-Adapter V2, LAVIN
 - LLaMA-Adapter V2: Finetuning 65B LLaMA for 24 hours on a single GPU, reaching 99.3% of the performance level of ChatGPT



LLaMA-Adapter V2: 14M parameters

QLoRA: Efficient Finetuning of Quantized LLMs

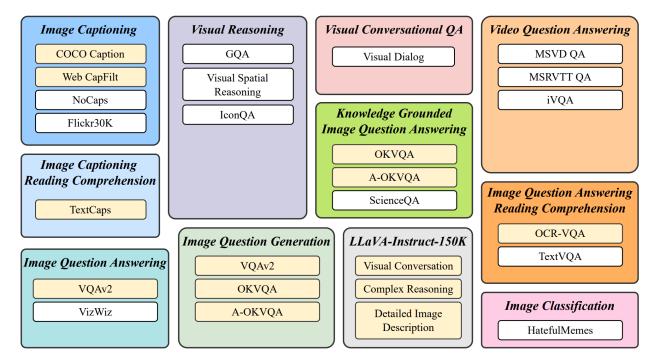


LAVIN: 3.8M parameters

Source: Chunyuan Li's CVPR 2023 Tutorial

Main Categories of Instruction Tuned Models

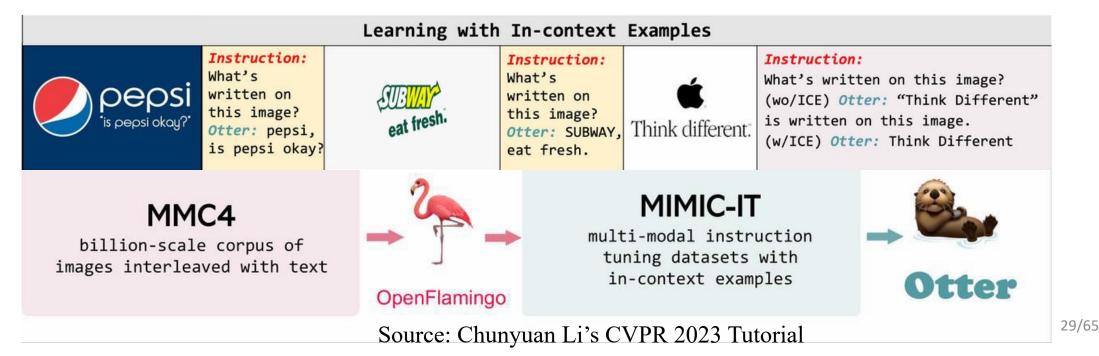
- Efficient Adaptation: LLaMA-Adapter V2, LAVIN
- Multitask Instruct with Established Datasets: InstructBLIP, mPlug-Owl, MultiInstruct, Multimodal GPT, InstructViT



Source: Chunyuan Li's CVPR 2023 Tutorial

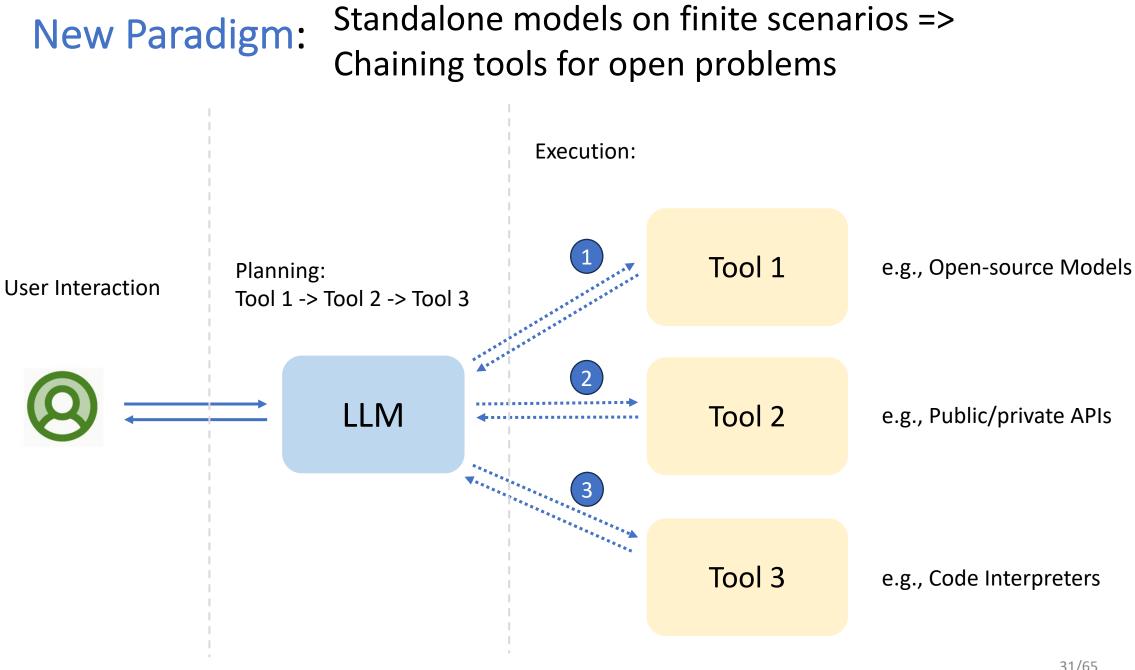
Main Categories of Instruction Tuned Models

- Efficient Adaptation: LLaMA-Adapter V2, LAVIN
- Multitask Instruct with Established Datasets: InstructBLIP, mPlug-Owl, MultiInstruct, Multimodal GPT, InstructViT
- Multimodal In-Context Learning: OpenFlamingo, Otter/MIMIC-IT, M3IT, MetaVL



Adapting LMMs to Novel Tasks

- End-to-End Trainable Models Perspective: multi-modal foundation models
 - Commercial: GPT-4v, Google's PaLM-E, Baidu's ERNIE, ...
 - Academic: LLaVA, Mini-GPT4, ...
- System design perspective: Multi-modal agents
 - VisualChatGPT, HuggingGPT, Cola, XGPT, MM-REACT, ViperGPT, ...

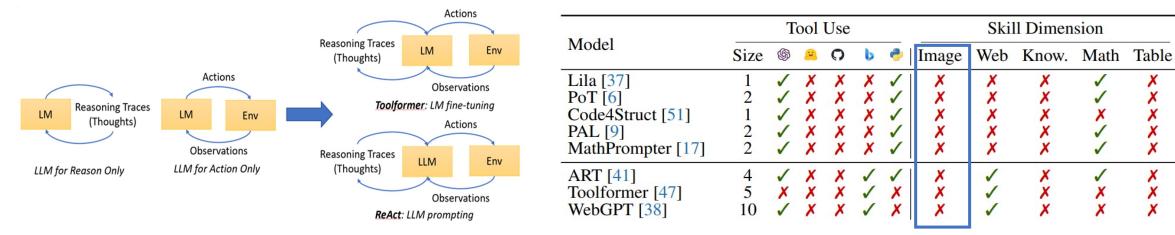


Linjie Li's slides, CVPR 2023 Tutorial

Chaining Paradigm (NLP):

Standalone models on finite scenarios => Chaining tools for open problems

- Text-only Agents
 - ReAct, Toolformer



• 🦜 🔗 LangChain

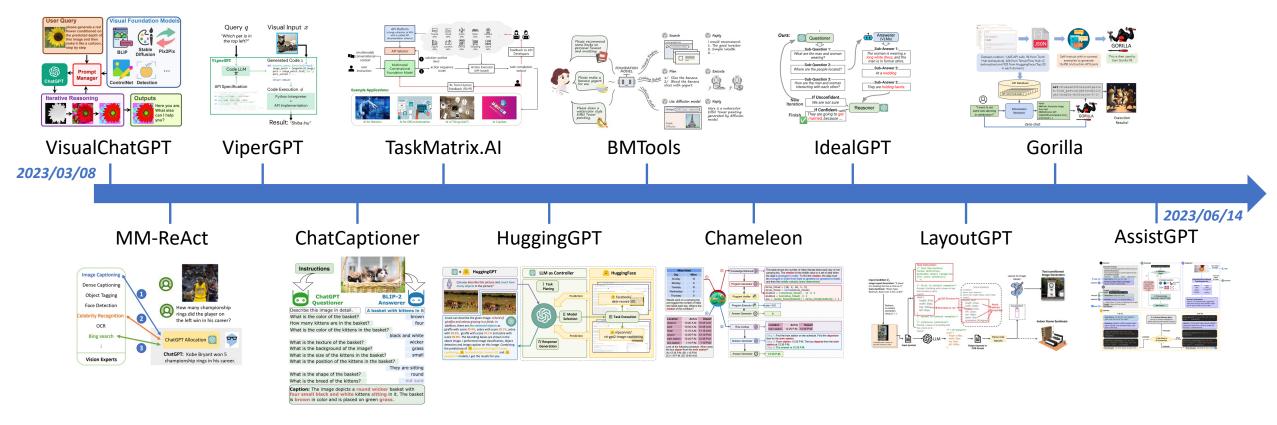
• Synergistically chaining and allocating NLP tools with LLMs

Yao, Shunyu, et al. "React: Synergizing reasoning and acting in language models." Oct. 2022.
 Schick, Timo, et al. "Toolformer: Language models can teach themselves to use tools." Feb. 2023.
 Harrison Chase. "Langchain. https://langchain.readthedocs.io" 2023.

New Paradigm:

Standalone models on finite scenarios => Chaining tools for open problems

• Multimodal Agents

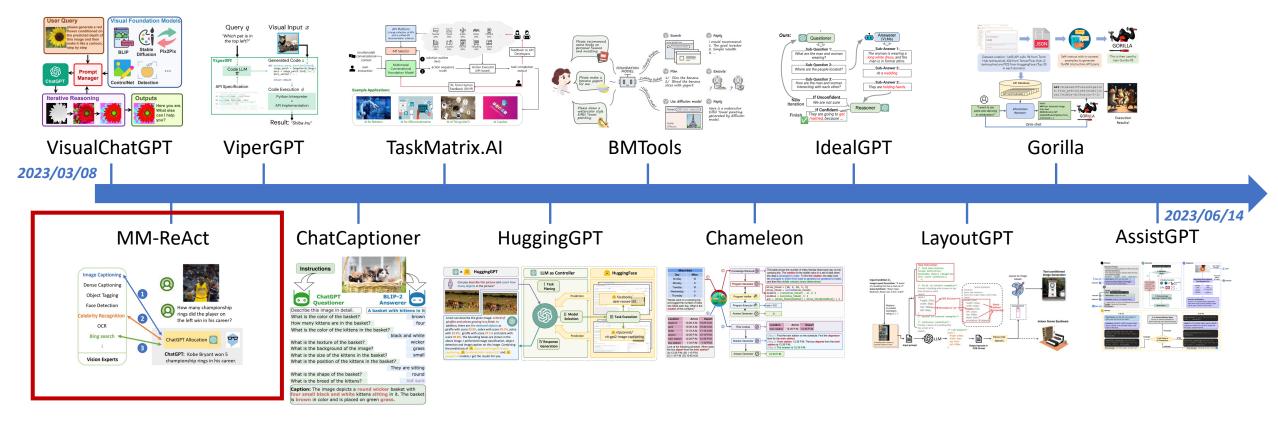


• Multimodal experts as tools for advanced multimodal reasoning and action

New Paradigm:

Standalone models on finite scenarios => Chaining tools for open problems

• Multimodal Agents



• Multimodal experts as tools for advanced multimodal reasoning and action

Linjie Li's slides, CVPR 2023 Tutorial

MM-REACT

- Leverages LLMs' high-level planning abilities to allocate various vision experts rather than solely using LLMs for text generation conditioned on visual inputs
- encourages ChatGPT to show the thought (reasoning) process to highlight why an external tool is required

MM-ReAct: Prompting ChatGPT for Multimodal Reasoning and Action https://multimodal-react.github.io/

Input

"What should I do after kneading the dough, before dividing it into pieces? For how long?" Chat as Interface

Output

After kneading the dough, you should put it in a warm place before dividing it into pieces, according to the recipe in the image.

You should put the dough in a warm place for 1 hour.

"Can you change the squirrel in the image to a mouse?"

"I want to make a short video to highlight the long deuce by Kobe if there is any in the video. Chat as Interface

https://multimodal-react.github.io/

MM-ReAct is a system paradigm that composes numerous vision experts with ChatGPT for multimodal reasoning and action.

https://multimodal-react.github.io/

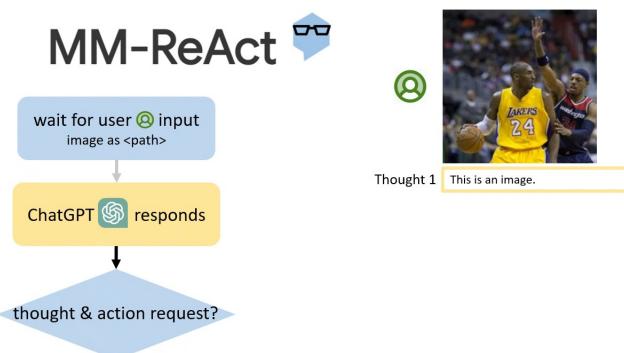
0

MM-ReAct Design

wait for user (2) input image as <path>

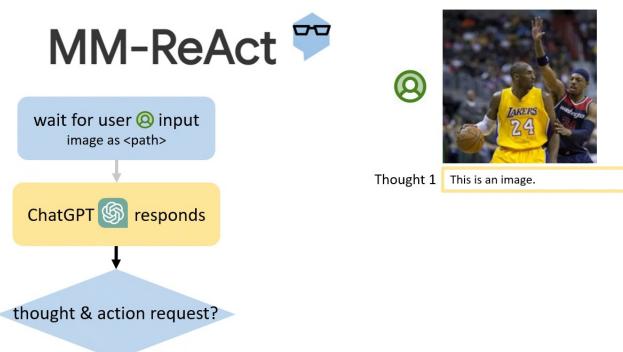
• To enable the image as input, we simply use the file path as the input to ChatGPT. The file path functions as a placeholder, allowing ChatGPT to treat it as a black box. 38/65

https://multimodal-react.github.io/



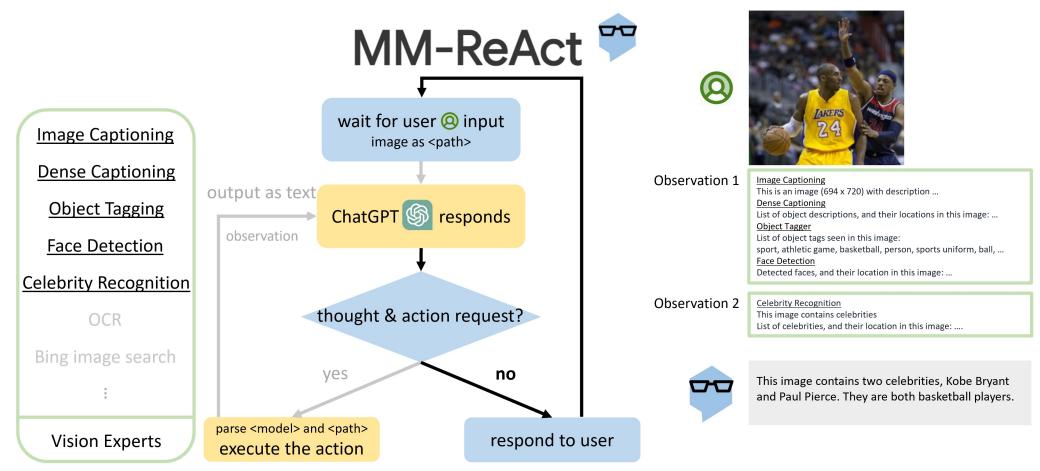
- Whenever a specific property, such as celebrity names or box coordinates, is required, ChatGPT is expected to seek help from a specific vision expert to identify the desired information.
- The expert output is serialized as text and combined with the input to further activate ChatGPT.

https://multimodal-react.github.io/



- Whenever a specific property, such as celebrity names or box coordinates, is required, ChatGPT is expected to seek help from a specific vision expert to identify the desired information.
- The expert output is serialized as text and combined with the input to further activate ChatGPT.

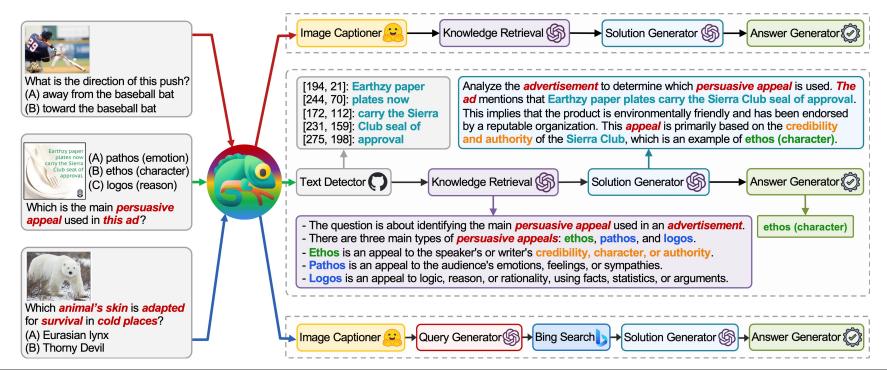
https://multimodal-react.github.io/



• If no external experts are needed, the response is directly returned to the user.

Extensibility: Plug-and-play (Adding More Tools)

Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models



Model	Tool Use						Skill Dimension					Inference & Extension		
	Size	\$	<mark></mark>	0	b	0	Image	Web	Know.	Math	Table	Composition	Planning	Plug-n-Play
MM-ReAct [56] Visual ChatGPT [55] ViperGPT [49] VisProg [12] HuggingGPT [48]	>10 >10 >10 >10 >10 >10	>>>>>	× 	× - - ×	< x x x x	×××××	~~~~	<pre></pre>	× × × -	✓ × ✓ × ×	× × ×	~~~~	word match natural lang. program program natural lang.	\$ \$ \$ \$ \$ \$
Chameleon (ours)	>10	1	1	1	1	1	1	1	1	1	1	1	natural lang.	1

Linjie Li's slides, CVPR 2023 Tutorial

Discussion

• LLMs -> Advanced Multimodal Systems

	Pros	Cons
Instruction Tuning	 End-to-end model that directly interprets rich semantics in multimodal inputs 	 Require data curation and training => more expensive Limited data => limited capabilities in certain scenarios (e.g., OCR)
Tool Using	 No training needed Can leverage abundant off-the-self models/APIs/code interpreters as tools 	 No training => Failures in invoking the right tool Weak domain experts => weak performance

- Can we use LMMs (e.g., LLaVa) as the tool allocator?
- If so, what capabilities would require a tool? And what can be solved by instruction tuning?

Embodied Agents: Language-driven Robotics

- Embodied agents can follow natural language commands to do different tasks as well as learn to do new tasks quickly
- High-level planning, perceptual feedback, and low-level control are among sub-tasks of an embodied agent

Planning and Embodied Agents

- Zero-shot planners (Huang et al., ICML 2022)
- SayCan (Ahn et al., 2022)
- Inner Monolouge (Huang et al., CoRL 2022): Embodied reasoning through planning with language models
- LLM-Planner (Song et al., ICCV 2023)
- PaLM-E (Driess et al., 2023)

LLM as a High-level Planner

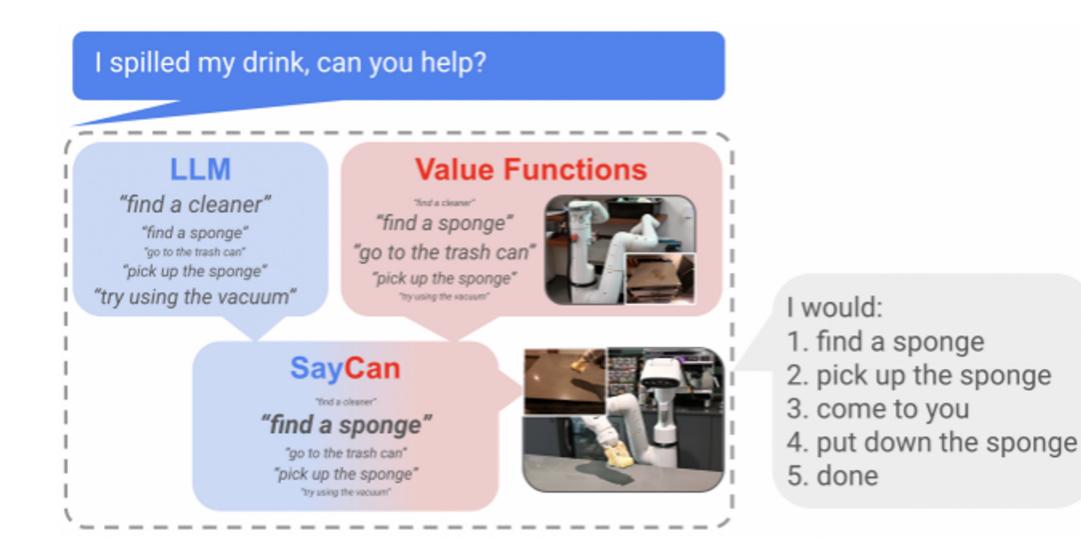
- High-level planning: Uses LLMs to decompose abstract instructions into a sequence of subgoals executable by an agent (i.e., actionable steps)
 - Cook a potato and put it on the plate =>
 [Navigation potato, Pickup potato, Navigation microwave, ...]
- Low-level planner can be trained more easily: agent can execute short-horizon skills from a library of previously trained policies trained with RL or BC

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

¹ Michael Ahn*, Anthony Brohan*, Noah Brown*, Yevgen Chebotar*, Omar Cortes*, Byron David*, Chelsea Finn*, Chuyuan Fu[†], Keerthana Gopalakrishnan*, Karol Hausman*, Alex Herzog[†], Daniel Ho[†], Jasmine Hsu*, Julian Ibarz*, Brian Ichter*, Alex Irpan*, Eric Jang*, Rosario Jauregui Ruano*, Kyle Jeffrey*, Sally Jesmonth*, Nikhil J Joshi*, Ryan Julian*, Dmitry Kalashnikov*, Yuheng Kuang*, Kuang-Huei Lee*, Sergey Levine*, Yao Lu*, Linda Luu*, Carolina Parada*, Peter Pastor[†], Jornell Quiambao*, Kanishka Rao*, Jarek Rettinghouse*, Diego Reyes*, Pierre Sermanet*, Nicolas Sievers*, Clayton Tan*, Alexander Toshev*, Vincent Vanhoucke*, Fei Xia*, Ted Xiao*, Peng Xu*, Sichun Xu*, Mengyuan Yan[†], Andy Zeng*

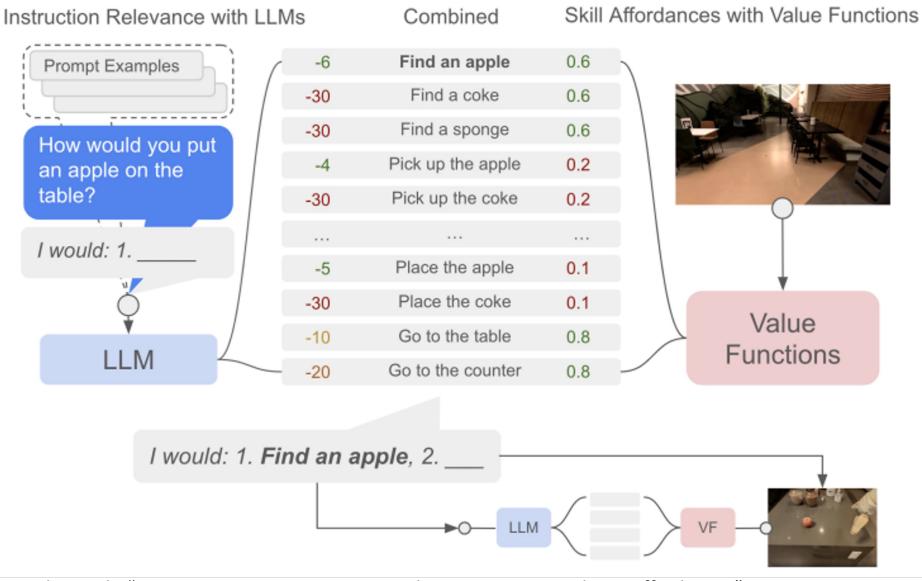
*Robotics at Google, [†]Everyday Robots

SayCan one of the pioneering work on using LLMs for embodied instruction following



Ranking admissible skills

multiplying each candidate action's probability under LLMs with the action's value function

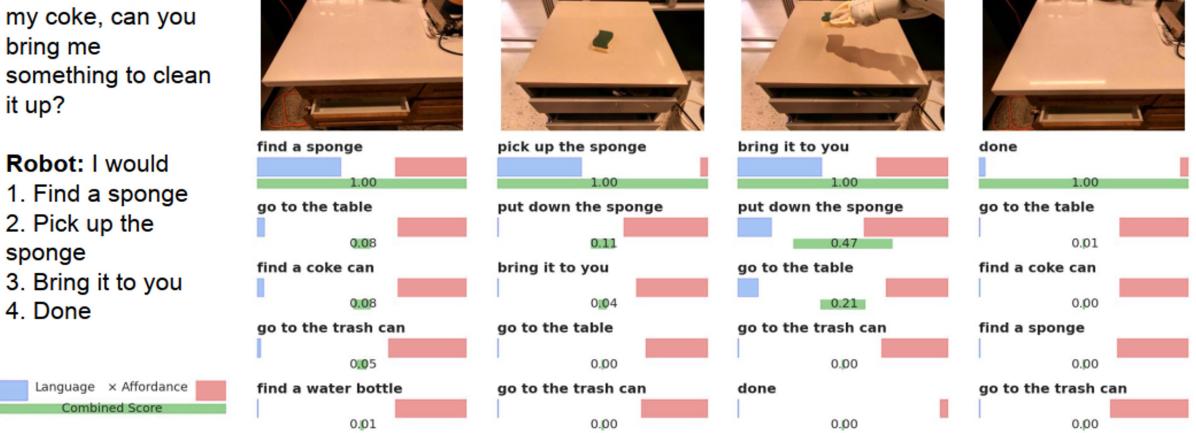


Ahn et al., "Do As I Can, Not As I Say: Grounding Language in Robotic Affordances", arXiv 2022

Algorithm 1 SayCan

Given: A high level instruction *i*, state s_0 , and a set of skills Π and their language descriptions ℓ_{Π} 1: $n = 0, \pi = \emptyset$ 2: while $\ell_{\pi_{n-1}} \neq$ "done" do $\mathcal{C} = \emptyset$ for $\pi \in \Pi$ and $\ell_{\pi} \in \ell_{\Pi}$ do 4: $p_{\pi}^{\text{LLM}} = p(\ell_{\pi}|i, \ell_{\pi_{\pi-1}}, ..., \ell_{\pi_0})$ 5: ▷ Evaluate scoring of LLM $p_{\pi}^{\text{affordance}} = p(c_{\pi}|s_n, \ell_{\pi})$ ▷ Evaluate affordance function 6: $p_{\pi}^{\text{combined}} = p_{\pi}^{\text{affordance}} p_{\pi}^{\text{LLM}}$ 7: $\mathcal{C} = \mathcal{C} \cup p_{\pi}^{\text{combined}}$ 8: end for 9: $\pi_n = \arg \max_{\pi \in \Pi} \mathcal{C}$ 10: Execute $\pi_n(s_n)$ in the environment, updating state s_{n+1} 11: n = n + 112:13: end while

Human: I spilled my coke, can you bring me something to clean it up?



SayCan assumes that each proposed step is executed successfully by the agent.

Human: How would you bring me a lime soda and a bag of chips?

Robot: I would

1. Find a lime soda 2. Pick up the lime soda

3. Bring it to you

4. Done

65% of errors was the planner error and 35% affordance error

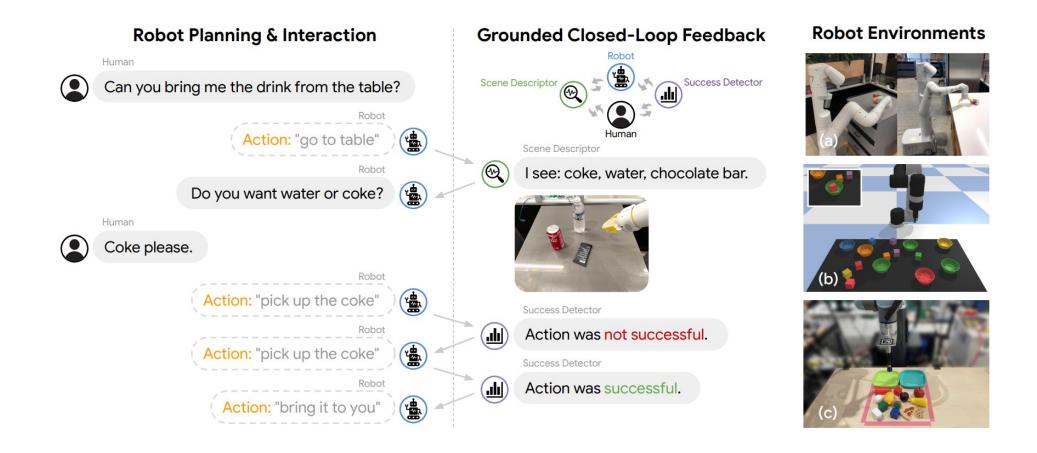
Inner Monologue: Embodied Reasoning through Planning with Language Models

Wenlong Huang[†], Fei Xia[†], Ted Xiao[†], Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, Brian Ichter Robotics at Google, [†] equal contribution and alphabetically listed Project website: https://innermonologue.github.io

Inner Monologue

- SayCan may not be robust in handling intermediate failures
- Inner Monologue explores ways to incorporate grounded feedback from the environment into LLM

Inner-Monolouge: Closed-loop Feedback



(Sim) Tabletop Jemei

Ř

(Real)

ement

Tabletop

Kitchen Mobile

Σ

Human: move all the blocks into mismatching bowls. Scene: There is a yellow block, yellow bowl, blue block, blue bowl, red block, red bowl. Robot: My goal is ['yellow block in blue bowl', 'red block in yellow bowl', 'blue block in red bowl']. Robot: Pick up yellow block and place it in blue bowl. Scene: You achieved ['yellow block in blue bowl'] Robot: I need red block in yellow bowl, blue block in red bowl Robot: Pick up red block and place it in yellow bowl.

Scene Description

Success Detection

Human: Sort fruits and condiments in different plates Scene: objects = [apple, egg, plum, pizza, cookie, salt, mustard, ketchup, lemon] Scene: occluded objects = [] Robot: robot.pickplace(strawberry, green plate) Robot: robot.pickplace(salt shaker, blue plate) Success Detector: False.

Robot: robot.pickplace(salt shaker, blue plate)

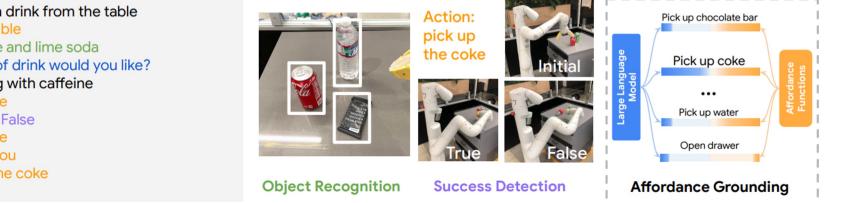
Rearrang Robot: robot.stop()

Human: Bring me a drink from the table Robot: go to the table (Real) Scene: I see a coke and lime soda Robot: What kind of drink would you like? anipulation Human: Something with caffeine Robot: Pick up coke Success Detector: False Robot: Pick up coke Robot: Bring it to you Robot: Put down the coke Robot: Done

Object Recognition (w/ Potential Occlusion)

Action: put the egg on the blue plate

Success Detection



Huang et al., "Inner Monologue: Embodied Reasoning through Planning with Language Models", CoRL 2022

	+Inner Monologue				
SayCan	Success	Object + Success			
50.0%	62.5%	75.0%			
50.0%	50.0%	75.0%			
83.3%	83.3%	100.0%			
12.5%	25.0%	33.3%			
0.0%	25.0%	75.0%			
0.0%	44.4%	44.4%			
30.8%	48.7%	60.4%			
	50.0% 50.0% 83.3% 12.5% 0.0% 0.0%	SayCan Success 50.0% 62.5% 50.0% 50.0% 83.3% 83.3% 12.5% 25.0% 0.0% 25.0% 0.0% 44.4%			

Table 3: Averaged success rate across 120 evaluations on several task families in our real-world mobile manipulation environment. We consider a standard setting and adversarial setting with external human disturbances. In all cases, LLM-informed embodied feedback is shown to be effective in improving robustness of the system, especially when low-level policies are prone to failures.

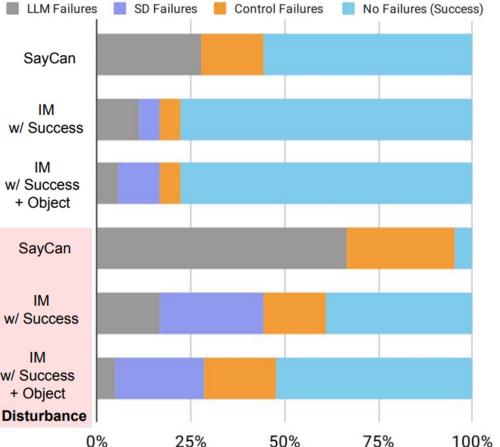
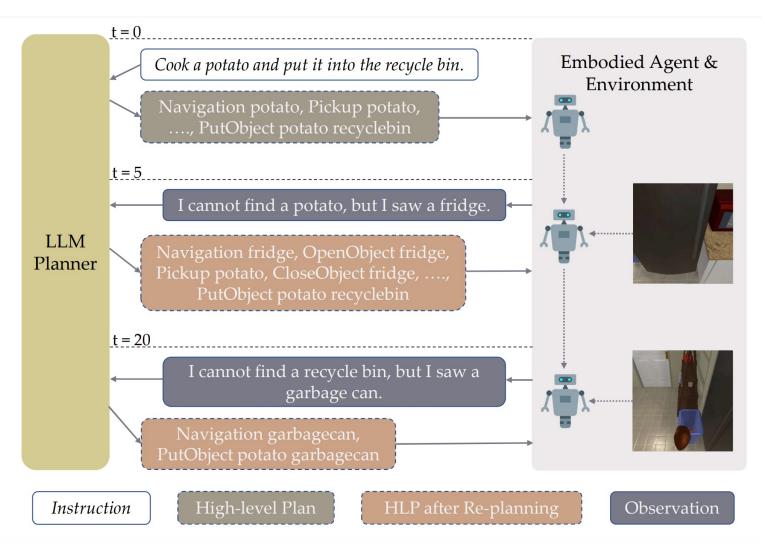


Figure 4: Failure causes on 120 evaluations. When disturbances are added (red), only the Inner Monologue variants consistently complete the instructions.

LMM-Planner



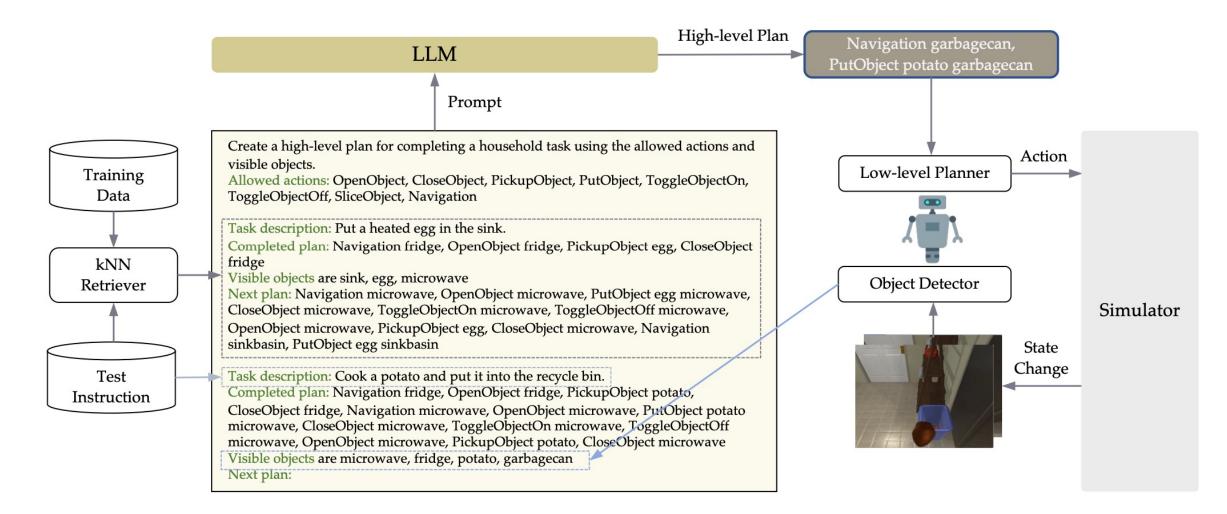
Song et al., "LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models", ICCV 2023^{58/65}

LMM-Planner

- LLM-Planner dynamically adjust the plan from LLMs based on environmental perception
- Whenever agent has taken too many steps for the current subgoal or has made too many failed attempts, it replans
 - prompts the LLM again to generate a new continuation of the plan
- A novel grounded replanning algorithm to empower LLM-Planner with physical grounding.

Song et al., "LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models", ICCV 2023^{59/65}

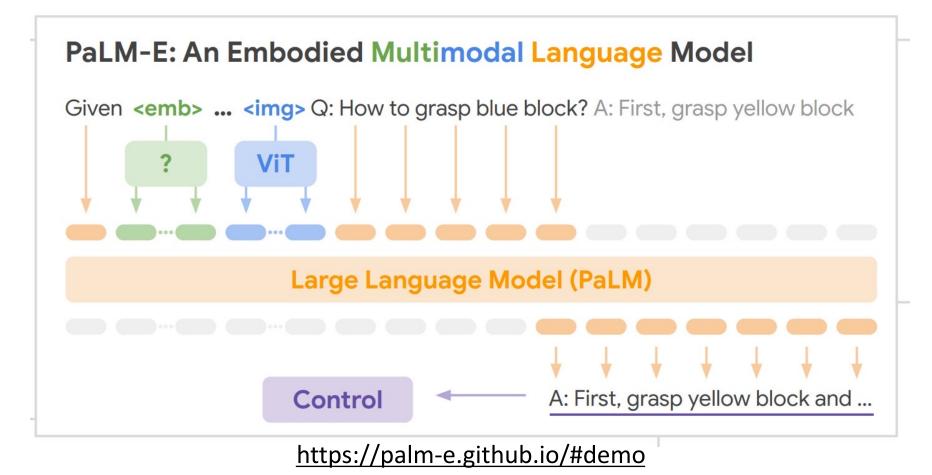
LMM-Planner



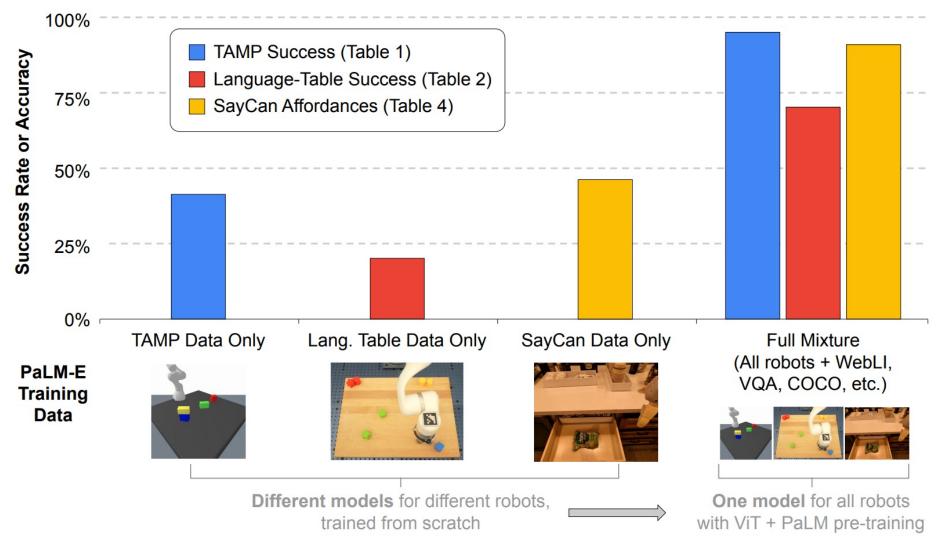
Song et al., "LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models", ICCV 2023^{60/65}

PaLM-E: An LMM for embodied AI

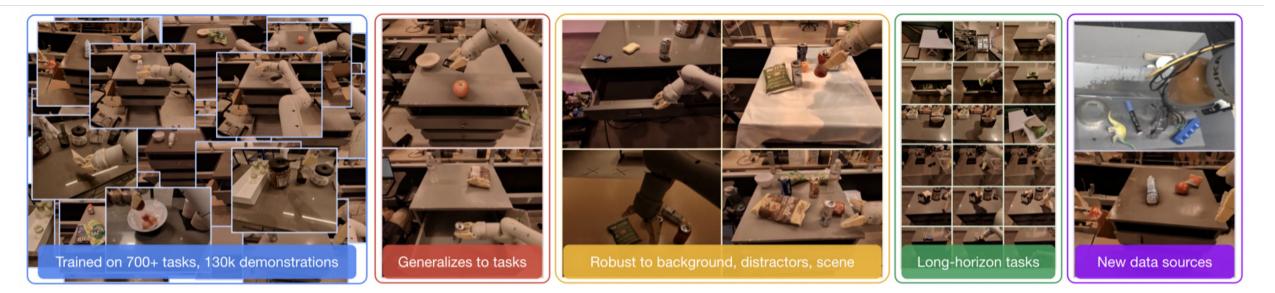
PaLM-E is a generative model producing text based on multi-model sentences as input



Driess et al., "PaLM-E: An Embodied Multimodal Language Model", 2023



Driess et al., "PaLM-E: An Embodied Multimodal Language Model", 2023



(b) RT-1's large-scale, real-world training (130k demonstrations) and evaluation (3000 real-world trials) show impressive generalization, robustness, and ability to learn from diverse data.

Conclusion

- Instruction tuning to improve LMMs capabilities
- LLMs as planner for chaining tools as another way
- Embodied Agents for language-driven robotics by the above two ways

Questions