Large Language Models

Calibration of prompting LLMs

- Sharif University of Technology
 - Soleymani
 - Fall 2023

Sensitivity of LLMs predictions

- LLMs are highly sensitive and even biased to:
 - the choice of templates
 - verbalizers or label spaces (such as yes/no, true/false, correct/incorrect)
 - demonstration examples and their permutations
- performance.

Calibration methods mitigate the effects of these biases while recovering LLM

Prompt engineering difficulties

- Prompt engineering is an informal and difficult process.
 - Small changes to a prompt can cause massive changes to the model's output
 - highly sensitive and even biased to the choice of templates, verbalizers, and demonstrations
 - a harsh reality in creating applications with LLMs.

Finding techniques that make LLMs more accurate and reliable



In-Context Learning

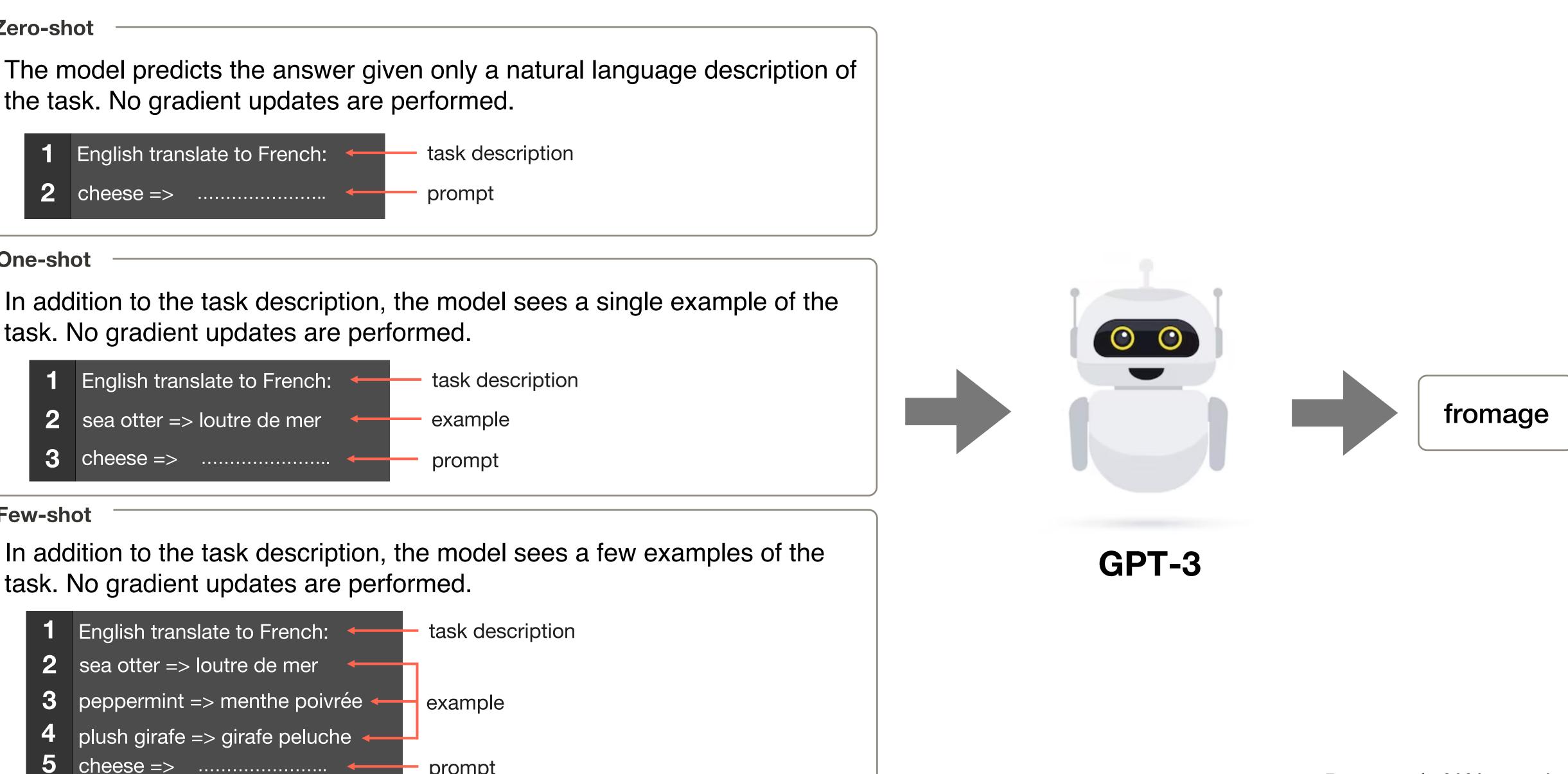
Zero-shot

the task. No gradient updates are performed.

1	English translate to French:	
2	cheese =>	 prompt

One-shot

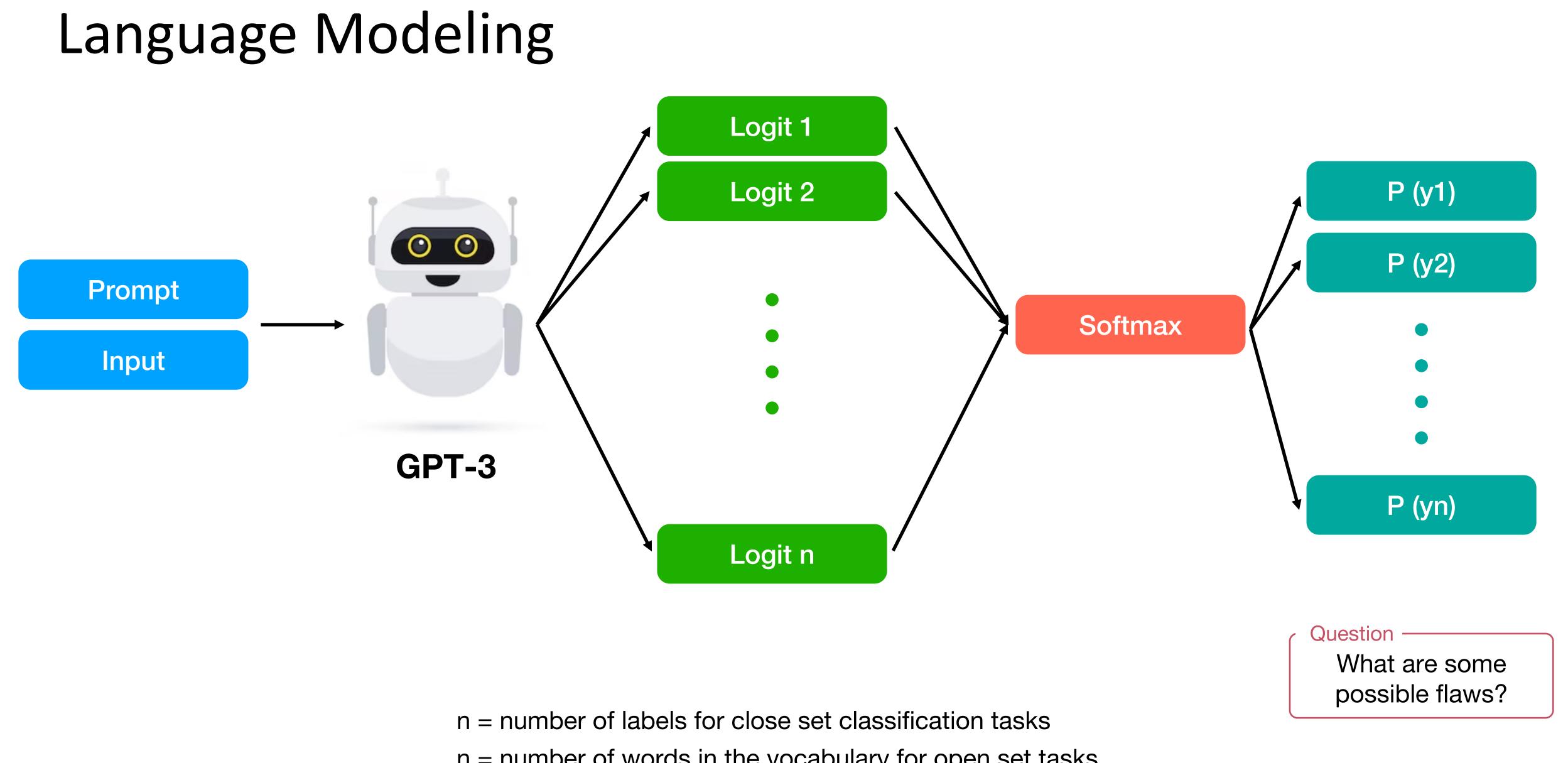
task. No gradient updates are performed.



Few-shot

task. No gradient updates are performed.

Brown et al., 2020

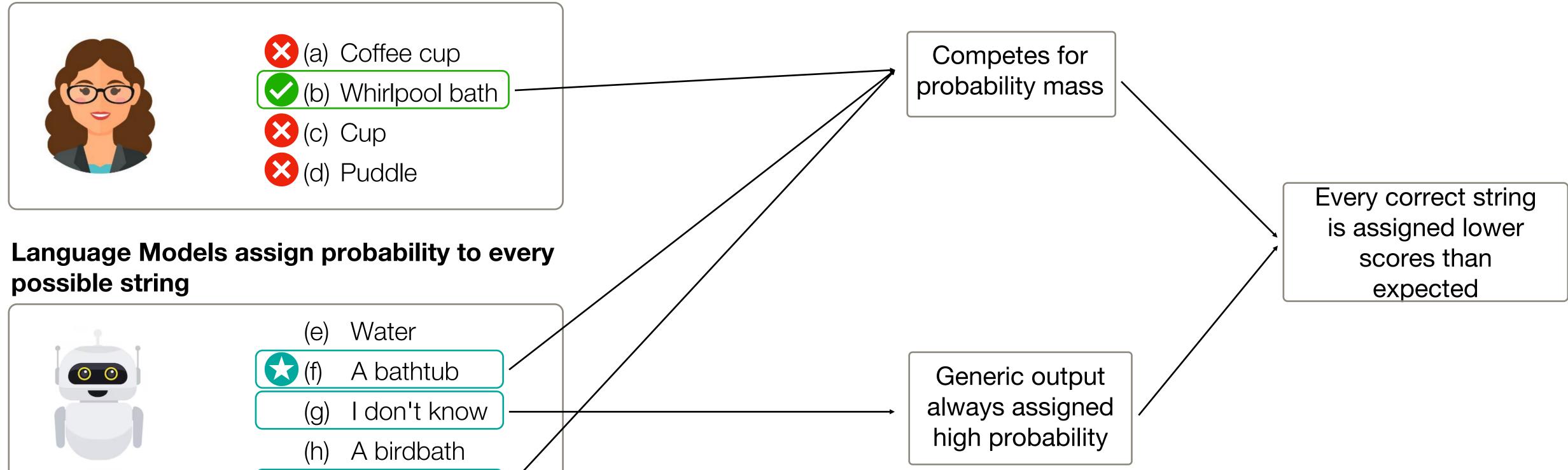


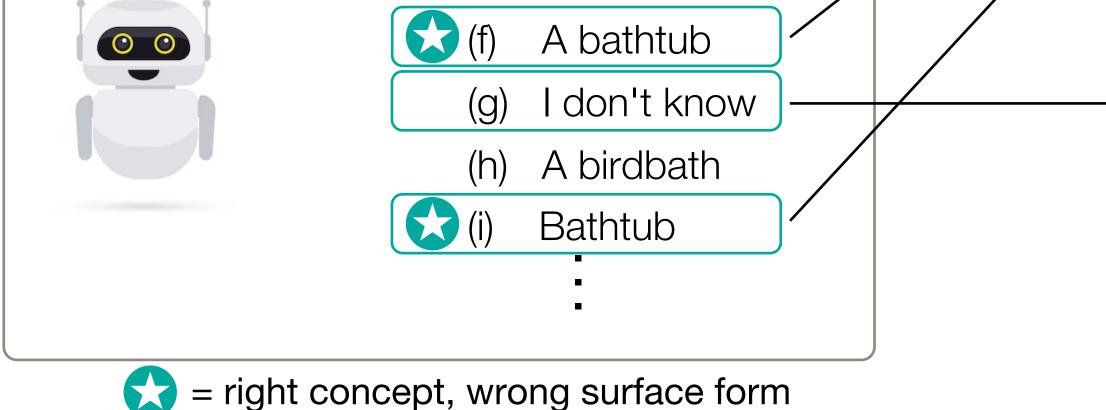
n = number of words in the vocabulary for open set tasks

Surface Form Competition

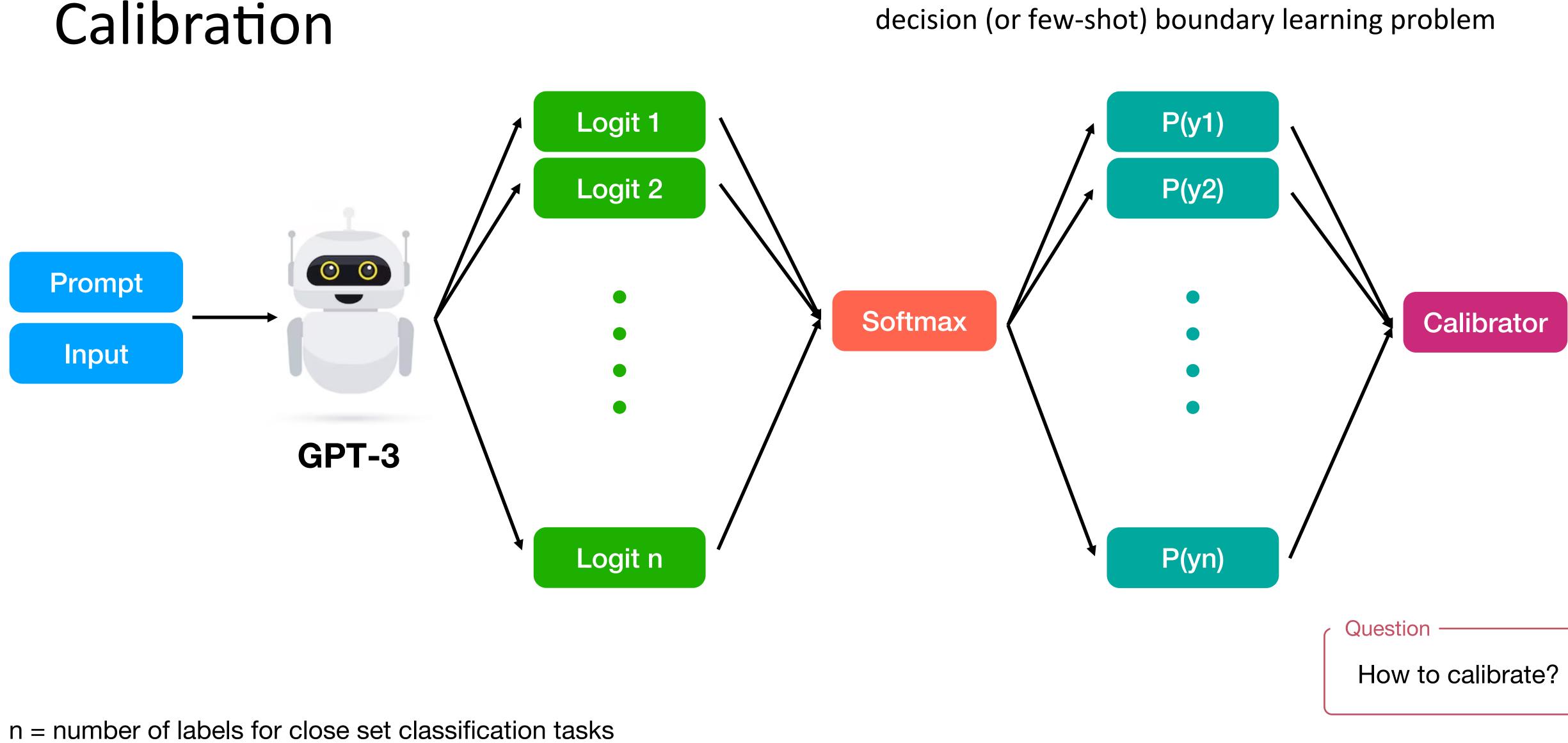
A human wants to submerge himself in water, what should he use?

Humans select options





Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021



n = number of words in the vocabulary for open set tasks

calibration problem can be framed as an unsupervised

Calibrate Before Use: Improving Few-Shot Performance of Language Models

Some slides adapted from http://ericswallace.com/calibrate

Tony Z. Zhao^{*1} Eric Wallace^{*1} Shi Feng² Dan Klein¹ Sameer Singh³

ICML 2021

Components of a prompt:

Prompt format

Training example selection

Training example permutation

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

Input: Subpar acting. **Sentiment:** negative **Input:** Beautiful film. **Sentiment:** positive **Input:** Amazing.

Sentiment:

Q: What's the sentiment of "Subpar acting"?

- A: negative
- Q: What's the sentiment of "Beautiful film"?
- A: positive
- Q: What's the sentiment of "Amazing"?
- A:

Components of a prompt:

Prompt format

Training example selection

Training example permutation

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

Input: Subpar acting. **Sentiment:** negative **Input:** Beautiful film. **Sentiment:** positive **Input:** Amazing.

Sentiment:

Input: Good film. **Input:** Don't watch. **Input:** Amazing.

Sentiment: positive **Sentiment:** negative **Sentiment:**

Components of a prompt:

Prompt format

Training example selection

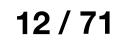
Training example permutation

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

Input: Subpar acting. **Sentiment:** negative **Input:** Beautiful film. **Sentiment:** positive **Input:** Amazing.

Sentiment:

Input: Beautiful film. **Sentiment:** positive Input: Subpar acting. Sentiment: negative **Input:** Amazing. Sentiment:

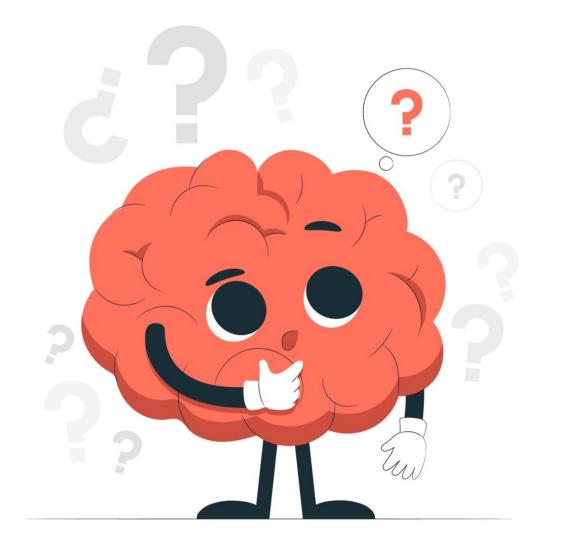


Components of a prompt:

Prompt format

Training example selection

Training example permutation



Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

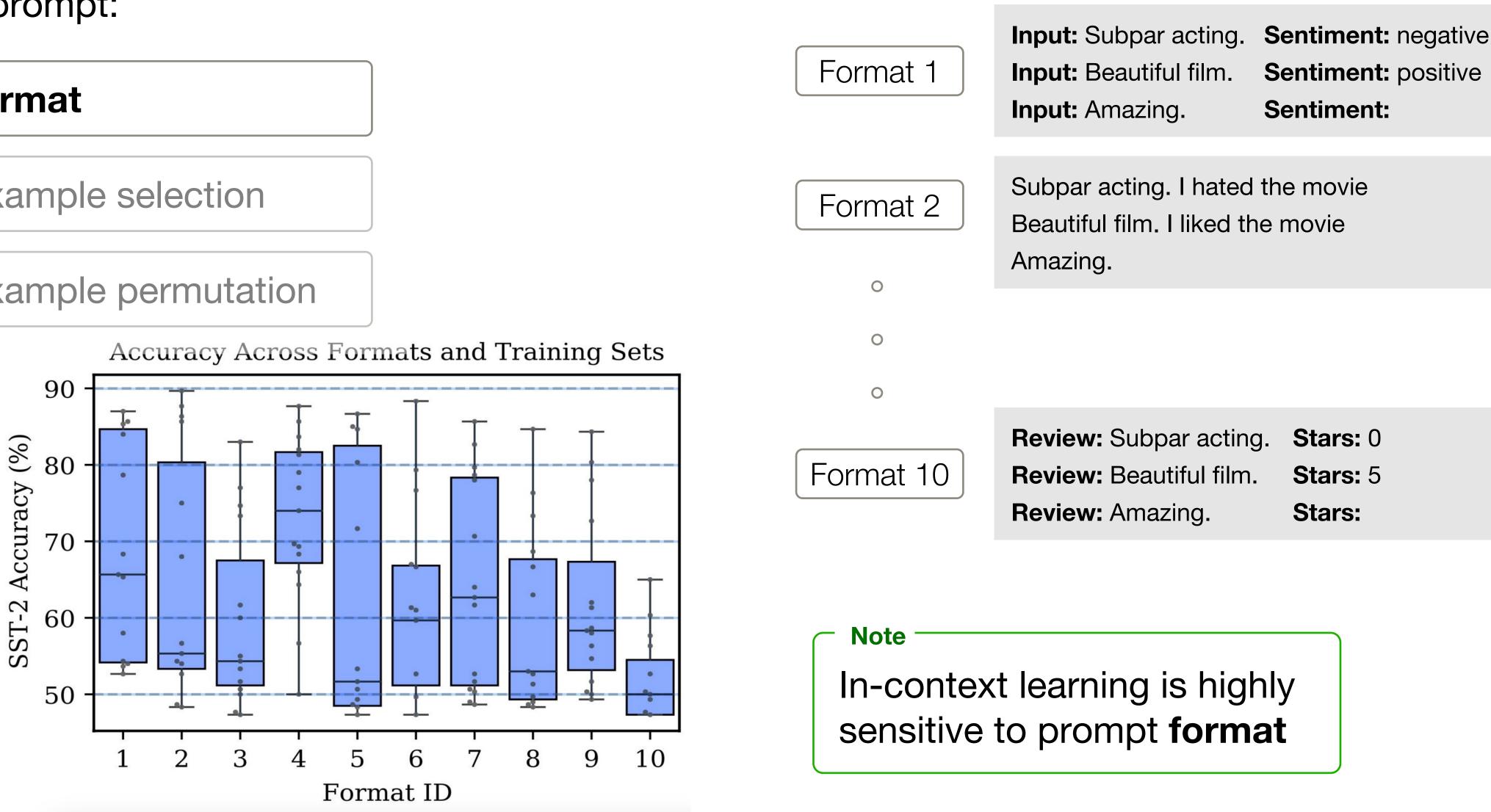
Let's try to ablate each component ...

Components of a prompt:

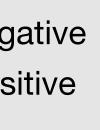
Prompt format

Training example selection

Training example permutation



Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021



Components of a prompt:

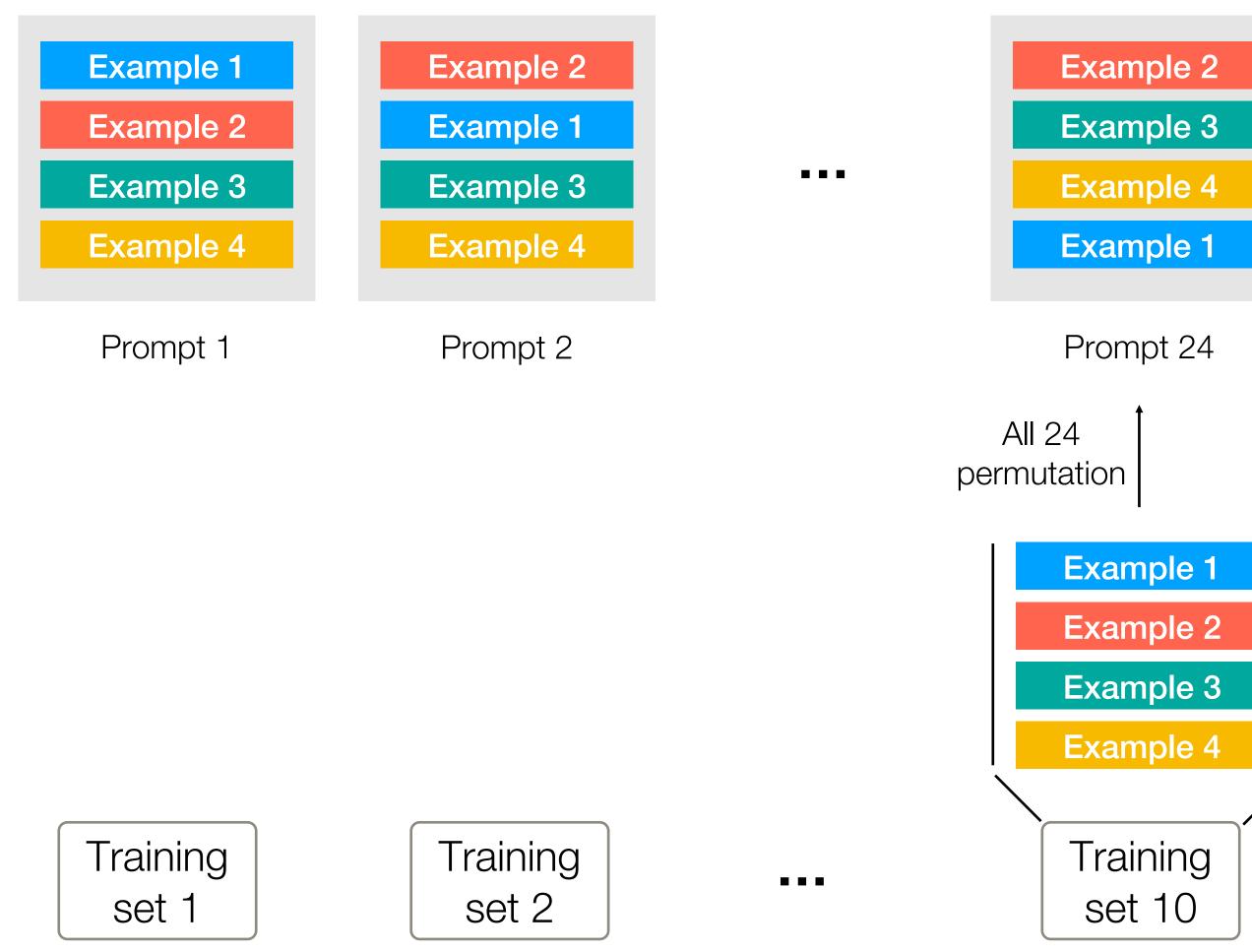
Prompt format

2 т

3

Training example selection

Training example permutation



Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

Components of a prompt:

Prompt format

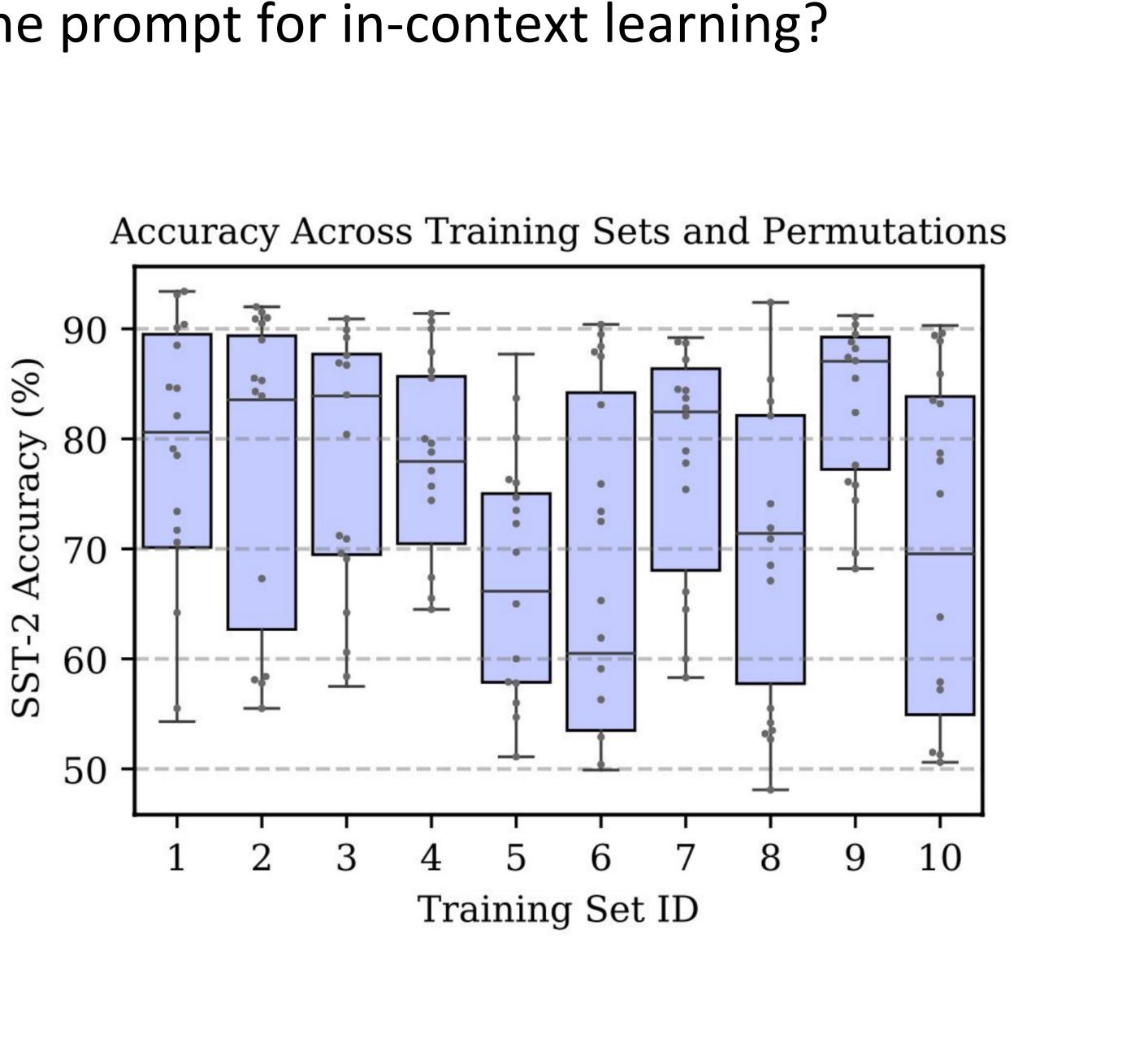
Training example selection

Training example permutation

Note

In-context learning is highly sensitive to example selection

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021



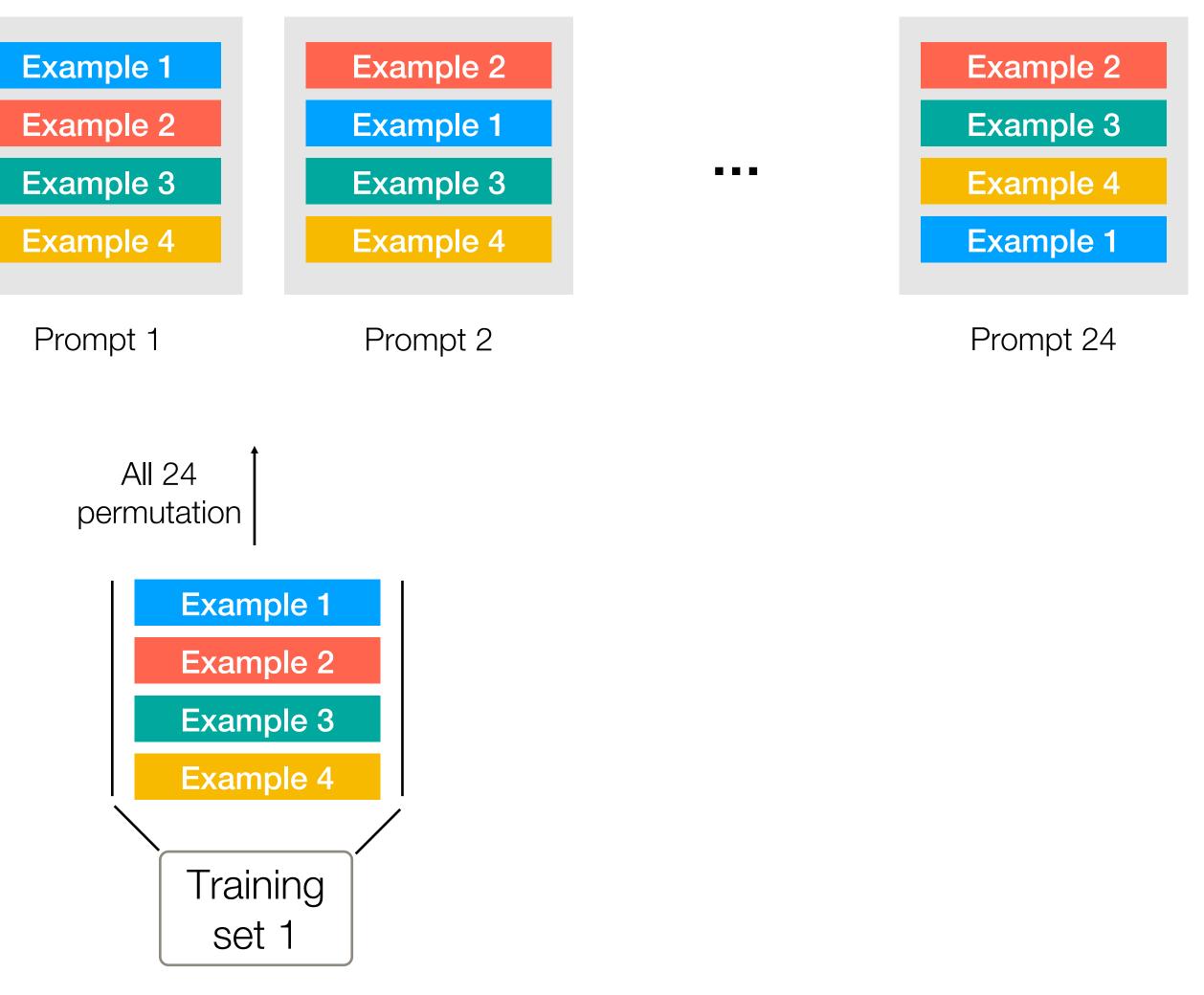
Components of a prompt:

Prompt format

Training example selection

3 Training example permutation

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021



Components of a prompt:

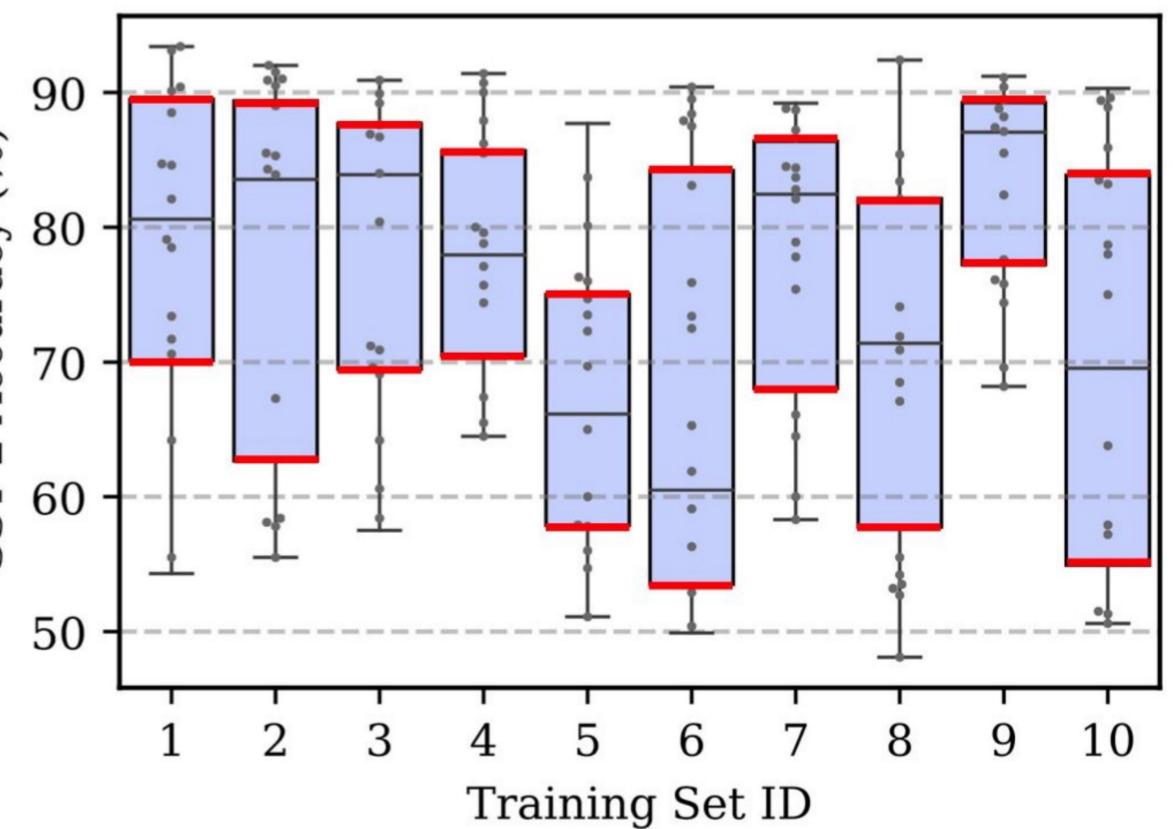
Prompt format

Training example selection

3 Training example permutation

Note

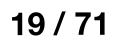
In-context learning is highly sensitive to example **permutation**





Three main reasons:

- Majority label bias
- Common token bias
- Recency bias

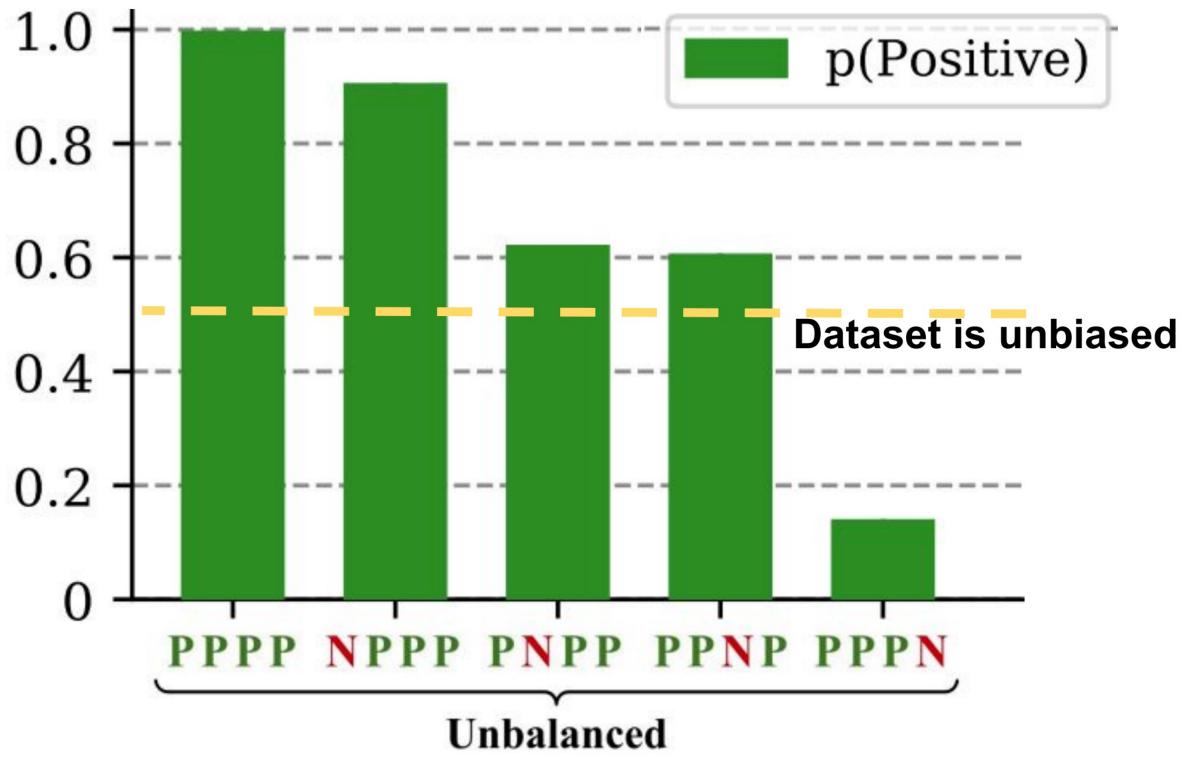


Three main reasons:

- Majority label bias
- Common token bias
- Recency bias

Probability 0

- Model prefers to predict positive when the majority labels is "P/Positive" 1.
- Surprising because the validation dataset is balanced! 2.

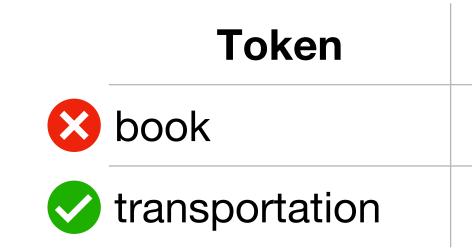


Three main reasons:

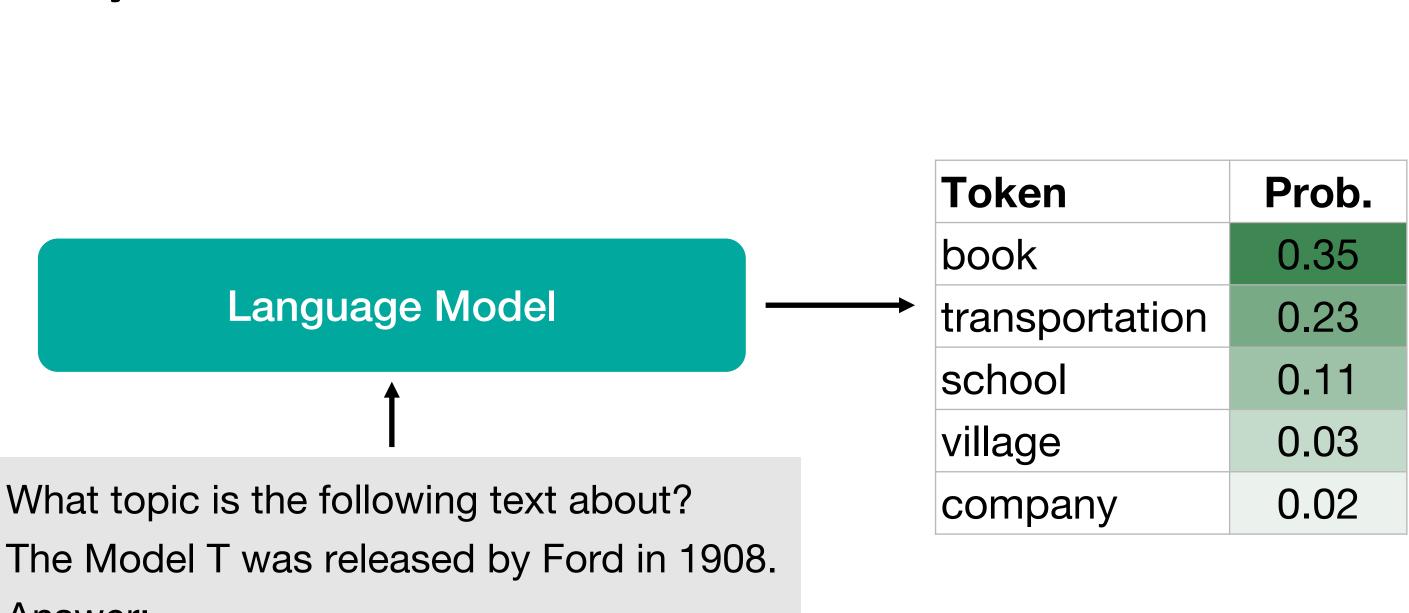
Majority label bias

- **Common token bias**
- Recency bias

Answer:



Model is biased towards predicting the incorrect frequent token "book" even when both "book" and "transportation" are equally likely labels in the dataset



Web(%)	Label (%)	Prediction (%)
0.026	9	29
0.000006	9	4

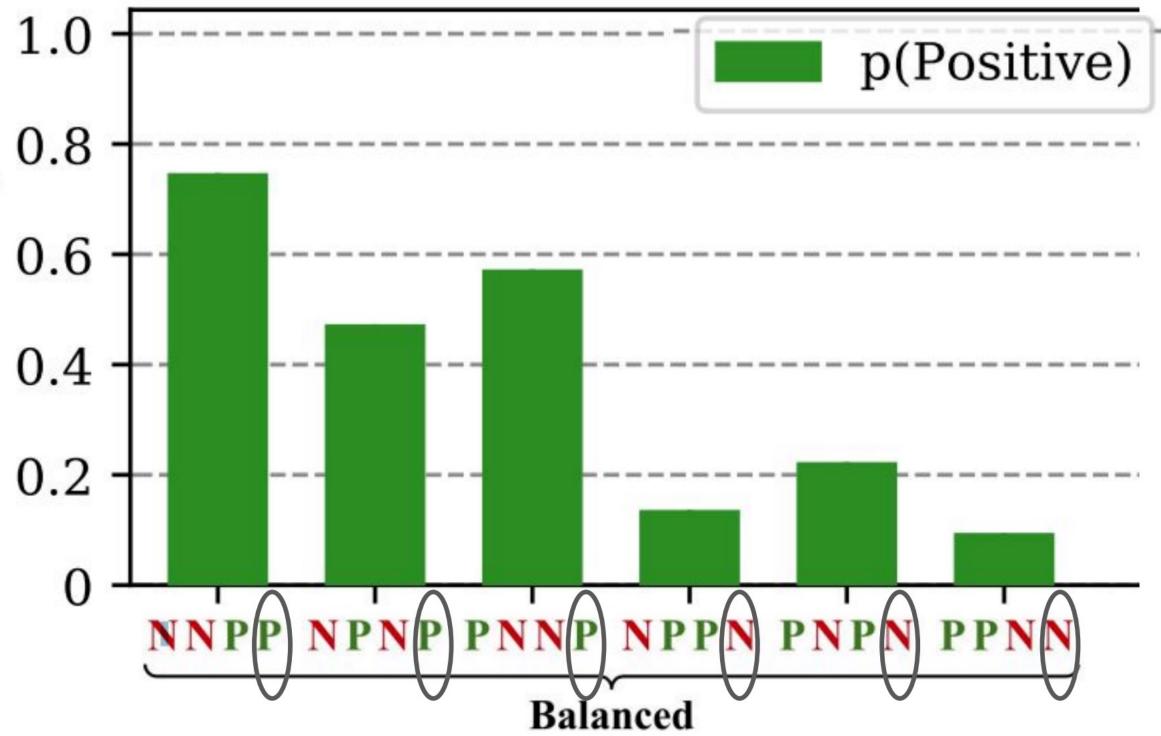
Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

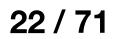
Three main reasons:

- Majority label bias
- Common token bias
- Recency bias

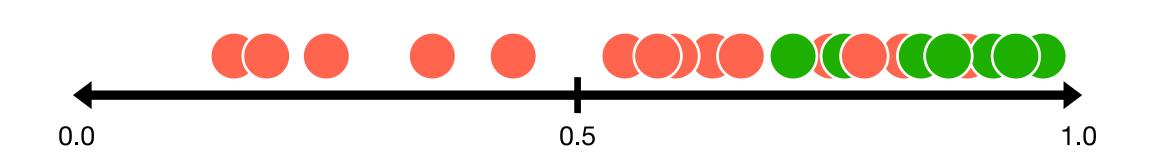
Probability

- 1. Model is heavily biased towards the most recent label
- 2. Again, dataset is balanced!

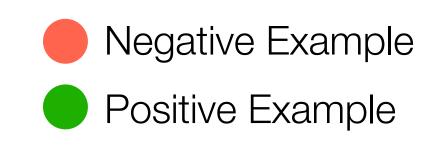




What is the impact of all these factors?

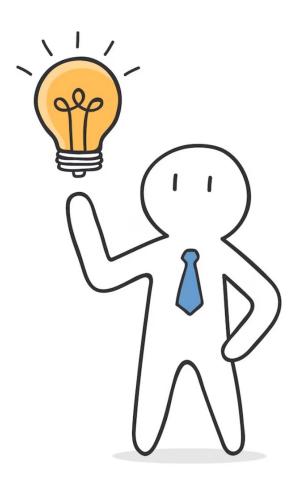


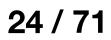
Visualizing predictions of 25 randomly sampled instances from SST2

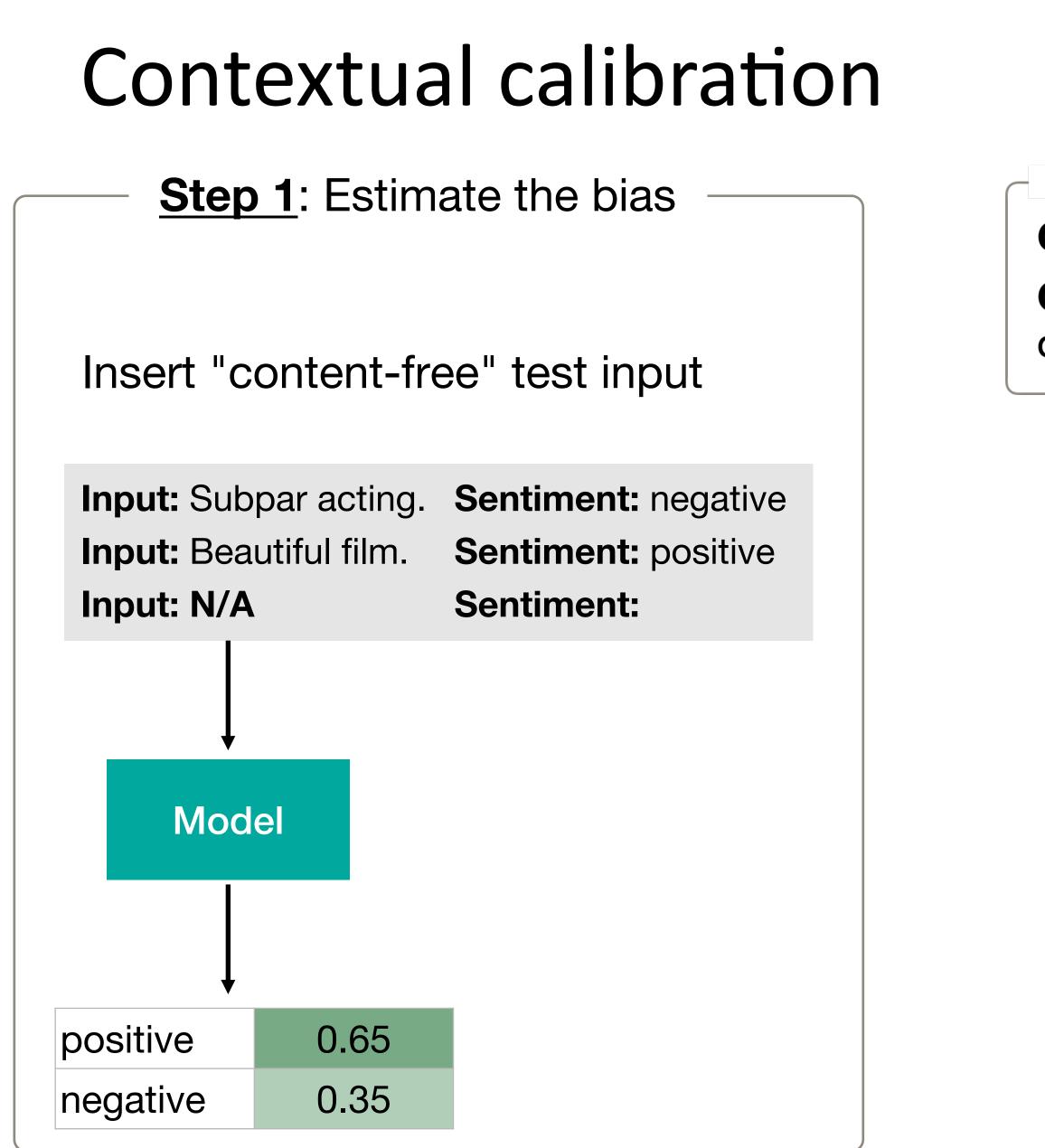


How do we make in-context learning more robust?

Can we infer the shift in the output distribution caused by a given prompt?



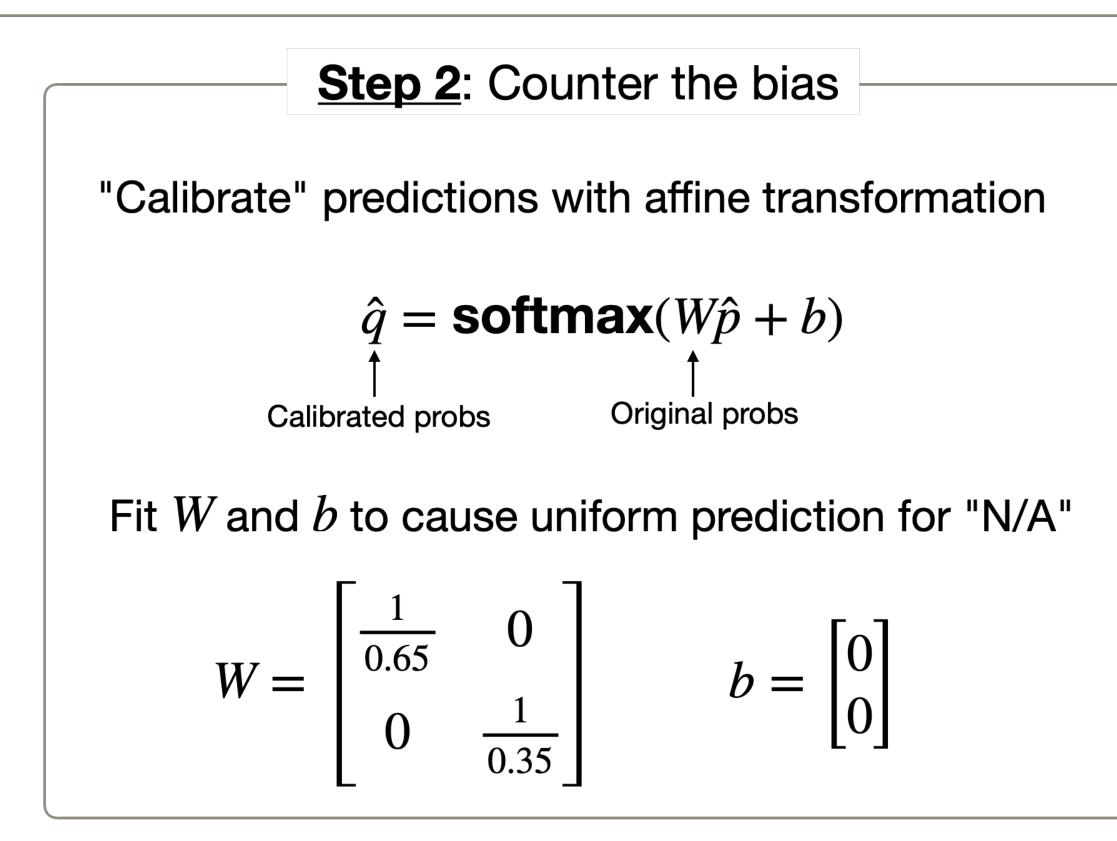




Note

Classification tasks: normalized scores of label words

Generation tasks: probabilities of the first token of the generation over the entire vocabulary



Slide from http://ericswallace.com/calibrate 25 / 71

Contextual calibration (technical details)

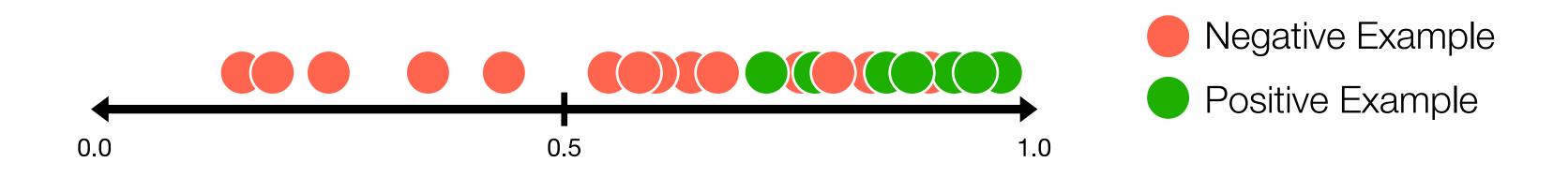
For generation tasks, why is only the first token calibrated?

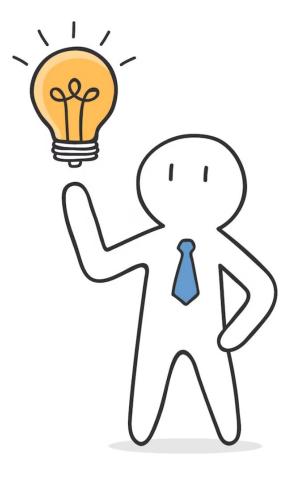
- Authors claim the first token has the most impact on future predictions
- Calibrating all generated tokens might be tricky as dimension of W is $|V| \times |V|$

Contextual calibration (technical details)

Why is W diagonal? Why can't we learn some fancy non-linear function?

- The biases effectively cause a simple shift in the output distribution, we don't need a fancy function
- Diagonal W is easy to invert, low computational overhead
- If we added a non-linearity, how would we learn W with a few samples?
 - Potentially gradient descent, but tricky with few samples

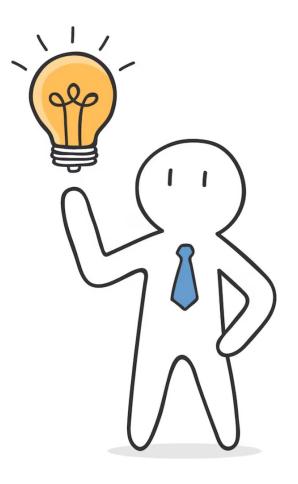




Contextual calibration (technical details)

Why do they calibrate probabilities instead of calibrating logits?

- OpenAI API only returns probabilities across the vocabulary
- Authors acknowledge that calibrating logits would have been more "natural" •



Datasets: Text Classification

Task	Prompt
SST-2	Review: This movie is amazing! Sentiment: Positive
AGNews	Article: USATODAY.com - Retail sales bounced back a bit jobless benefits fell last week, the government said Thursday improving from a midsummer slump. Answer: Business

Note 1. Label is just a single token

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

Label Names

Positive, Negative

t in July, and new claims for ay, indicating the economy is

World, Sports, Business, Technology

2. We calibrate probabilities of all the label words

Datasets: Fact Retrieval

Task	Prompt
LAMA	Alexander Berntsson was born in Sweden
	Khalid Karami was born in

Note

- 1. Label is just a single token

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

2. We calibrate probabilities of all the words in the vocabulary

Datasets: Information Extraction

ATIS	Sentence: what are the two american airlin
(Airline)	Airline name: american airlines
MIT Movies	Sentence: last to a famous series of anima
(Genre)	Genre: animated

Note

- Label is multiple tokens

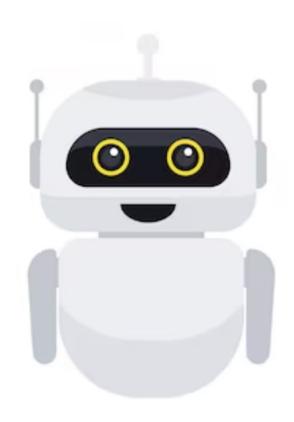
Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

nes flights that leave from dallas to san francisco in the evening

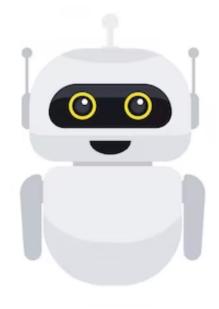
ated movies about a big green ogre and his donkey and cat friends

2. We calibrate probabilities of all the words in the vocabulary

Model



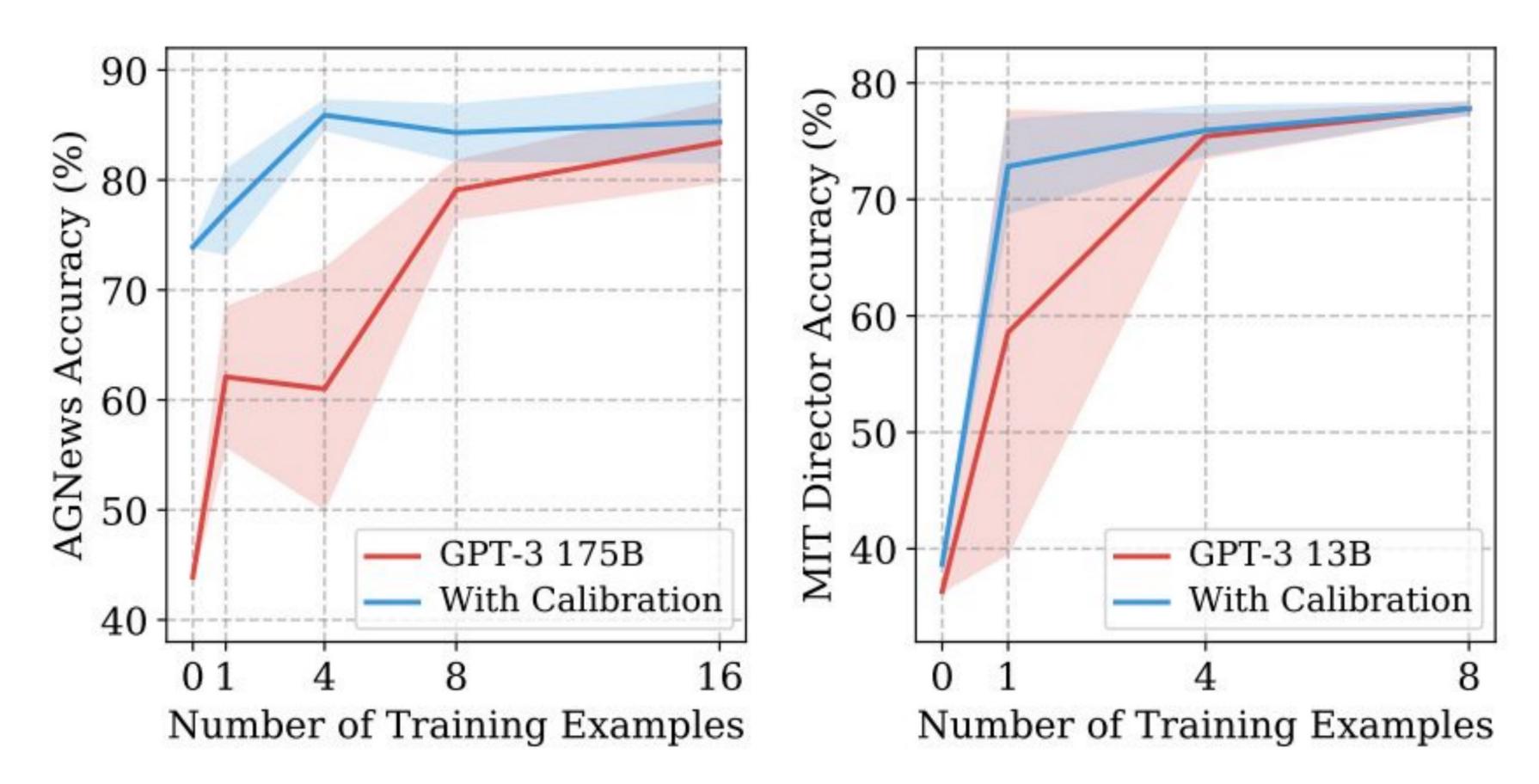
GPT-3 175 billion



GPT-3 13 billion

GPT-3 2.7 billion

Results

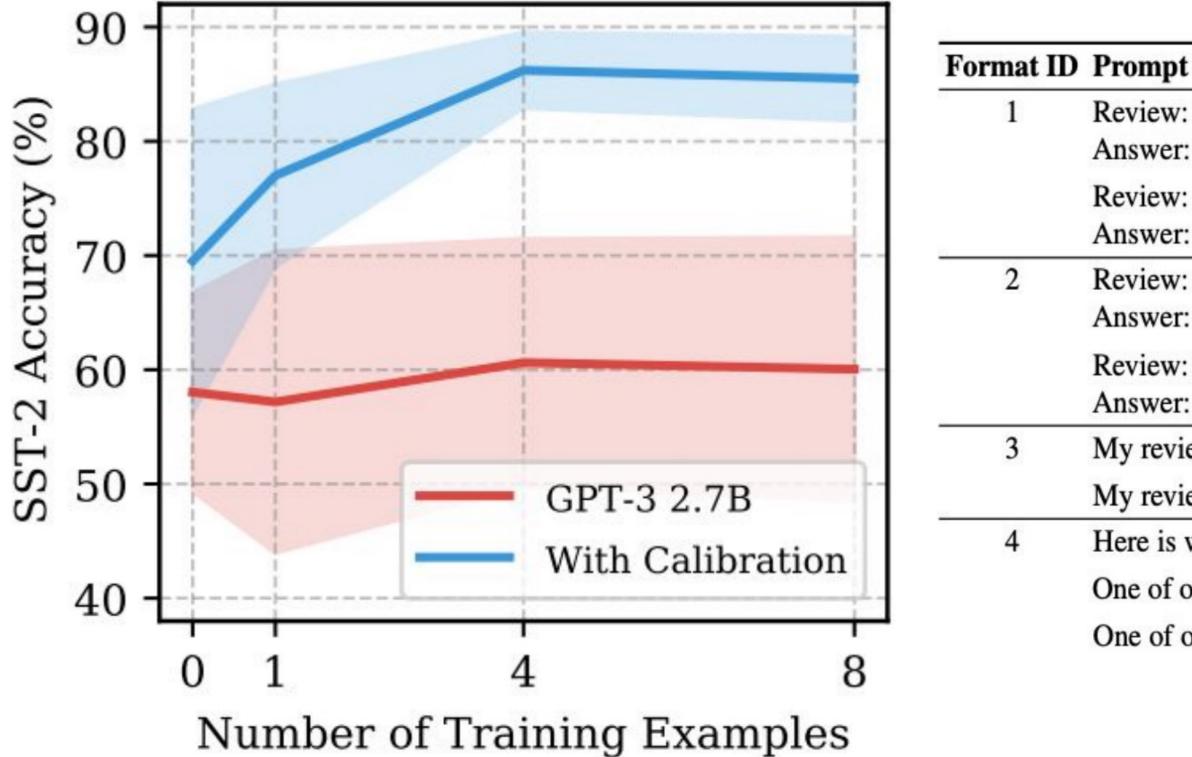


Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

Reduces variance across training sets and permutations

Results

Accuracy Over Diff. Formats

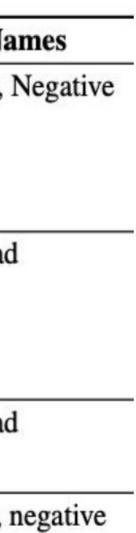


Reduces variance across 15 different prompt formats

Zhao et al., Calibrate before Use: Improving Few-Shot Performance of Language Models, ICML 2021

t	Label Nat
7: This movie is amazing!	Positive, N
r: Positive	
: Horrific movie, don't see it.	
r:	
7: This movie is amazing!	good, bad
r: good	
: Horrific movie, don't see it.	
r:	
iew for last night's film: This movie is amazing! The critics agreed that this movie was good	good, bad
view for last night's film: Horrific movie, don't see it. The critics agreed that this movie was	
what our critics think for this month's films.	positive, n
our critics wrote "This movie is amazing!". Her sentiment towards the film was positive.	

One of our critics wrote "Horrific movie, don't see it". Her sentiment towards the film was



Surface Form Competition: Why the Highest Probability Answer Isn't Always Right

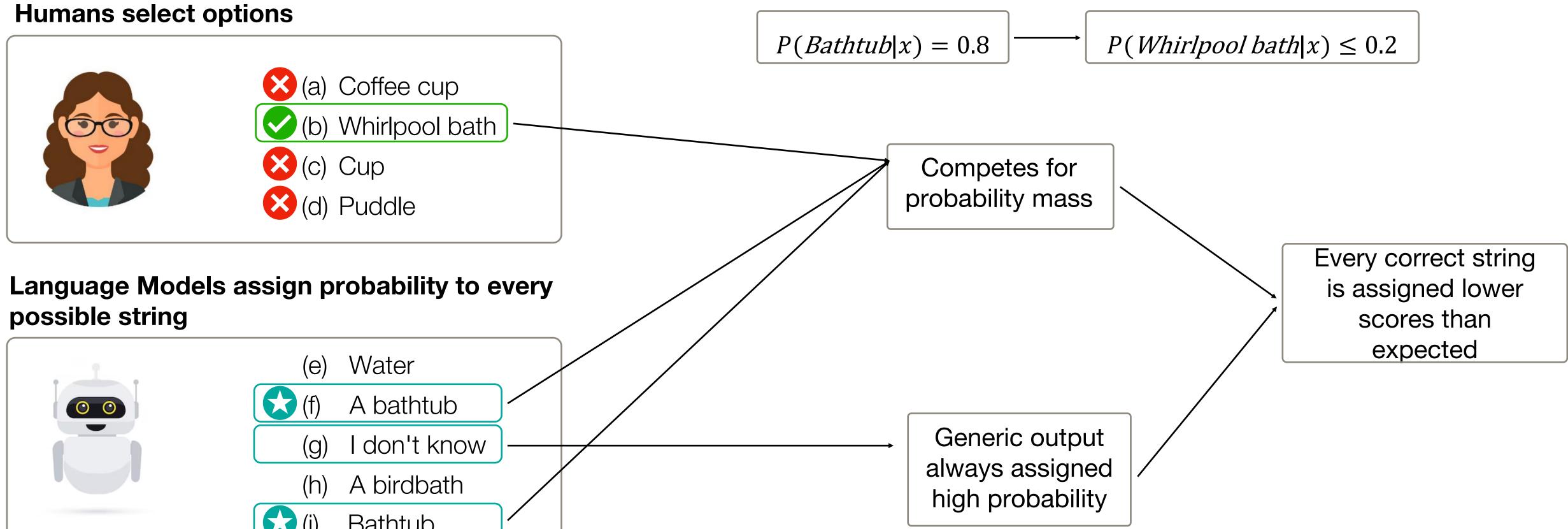
- - {ahai, pawest}@cs.washington.edu

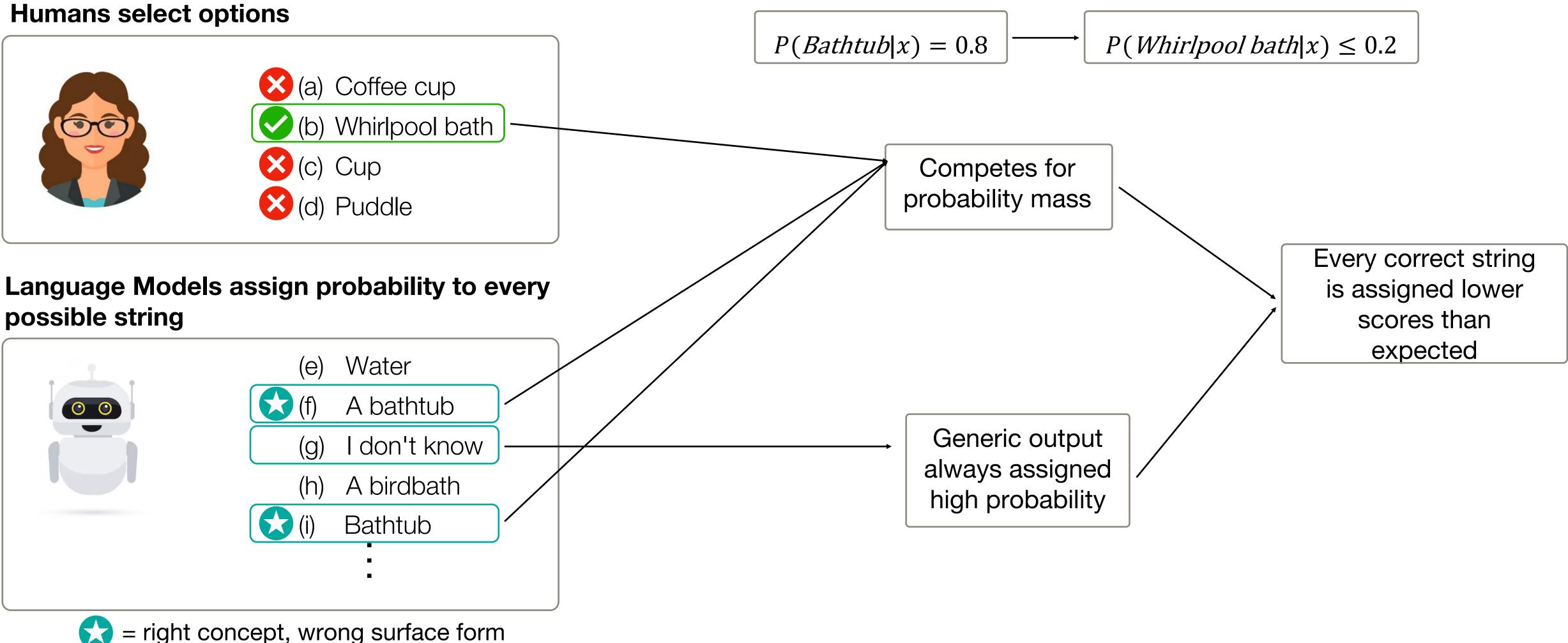
EMNLP 2021

⁼Ari Holtzman¹ ⁼Peter West^{1,2} Vered Shwartz^{1,2} Yejin Choi^{1,2} Luke Zettlemoyer¹ ¹Paul G. Allen School of Computer Science & Engineering, University of Washington ²Allen Institute for Artificial Intelligence

Surface Form Competition

A human wants to submerge himself in water, what should he use?





= right concept, wrong surface form

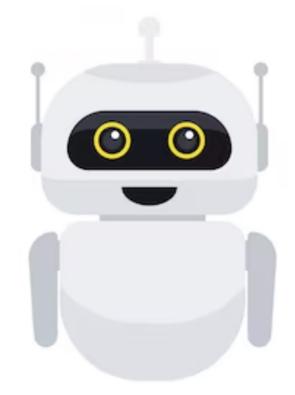
Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

Choice of Plausible Alternatives (COPA)

Premise (X): The bar closed because

Hypothesis 1 (y_1 **):** it was crowded.

Hypothesis 2 (y_2) : it was 3am.



 $P(y_1|X) > P(y_2|X)$

GPT-3

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

Baselines

Template:

Premise (X): The bar closed because

Domain Premise (*X*_{domain}**):** because

Hypothesis 1 (y_1 **):** it was crowded.

Hypothesis 2 (y_2) : it was 3am.

choose between Hypothesis y_1 and y_2 given Premise x

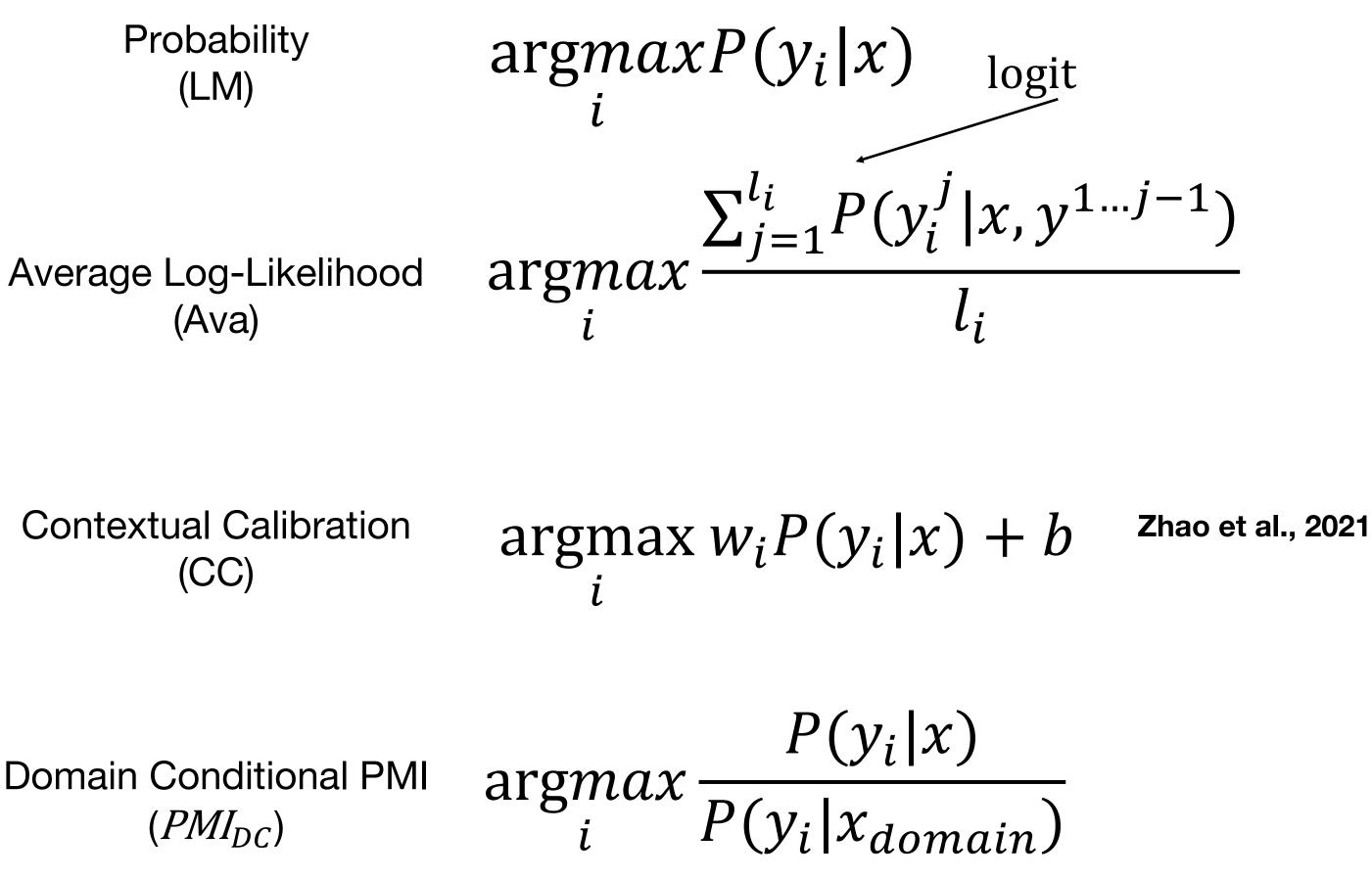
Baselines	
Template:	
Premise (X): The bar closed because	
Domain Premise (X_{domain}): because	Avera
Hypothesis 1 (y_1): it was crowded.	
Hypothesis 2 (y_2): it was 3am.	Cont

Note

This paper does not introduce any new modeling approaches, just a new scoring function

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

Scoring Functions



Pointwise Mutual Information (PMI)

Template:

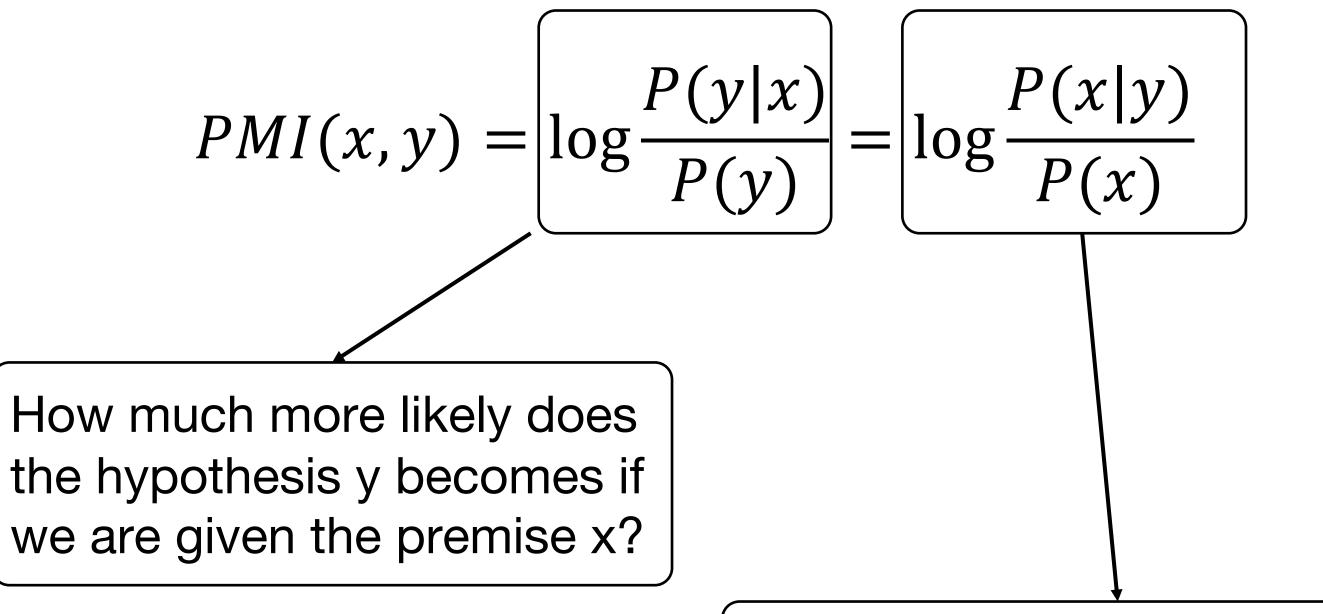
Premise (X): The bar closed because

Domain Premise (*X*_{*domain*}**):** because

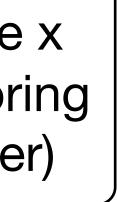
Hypothesis 1 (y_1) : it was crowded.

Hypothesis 2 (y_2) : it was 3am.

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021



The probability of the premise x given the hypothesis y - "scoring by premise" (more on this later)



Domain Conditional Pointwise Mutual Information (PMI)

Template:

Premise (X): The bar closed because

Domain Premise (X_{domain}): because

Hypothesis 1 (y_1): it was crowded.

Hypothesis 2 (y_2): it was 3am.

Note Assumption: ending of the conditional premise x is a domain-relevant string X_{domain}

 $PMI_{DC}(x, y)$

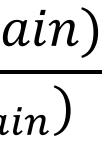
Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

$$PMI(x,y) = \log \frac{P(y|x)}{P(y)} = \log \frac{P(x|y)}{P(x)}$$

poorly calibrated because language models are not trained to produce unconditional generations

$$y, domain) = \log \frac{P(y|x, domain)}{P(y|domain)} = \log \frac{P(y|x, domain)}{P(y|x_{domain})}$$

where domain is representative of the given task



Dataset

Туре	Dataset	Template
	COPA	[The man broke his toe] _P [because] _{DP} [he got [I tipped the bottle] _P [so] _{DP} [the liquid in the
Continuation	StoryCloze	[Jennifer has a big exam tomorrow. She got s be. Her teacher stated that the test is postpone
	HellaSwag	[A female chef in white uniform shows a state and baking soda.] _{UH}
QA	RACE	[There is not enough oil in the world now. As $[]$.] _P question: [According to the passage, we than we can use now.] _{UH}
	ARC	[What carries oxygen throughout the body?] _F
	OBQA	[Which of these would let the most heat trave
	CQA	[Where can I stand on a river to see water fal
Boolean QA	BoolQ	title: [The Sharks have advanced to the Stanle the San Jose Sharks won a Stanley $Cup?$] _P [a
Entailment	RTE	[Time Warner is the world's largest media an or false? answer:] _{DP} [true.] _{UH}
	CB	question: Given that [What fun to hear Arten true, false, or neither? [the answer is:] _{DP} [true
	SST-2	"[Illuminating if overly talky documentary] _P
Text	SST-5	"[Illuminating if overly talky documentary] _P
Text Classification	AG's News	title: [Economic growth in Japan slows down [Expansion slows in Japan] _P [topic:] _{DP} [Spor
	TREC	[Who developed the vaccination against polic

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

Orginal Question [*Domain premise*]_{DP} [Orginal answers]_{IIH}

ot a hole in his sock. UH

e bottle froze.]_{UH}

so stressed, she pulled an all-nighter. She went into class the next day, weary as can ned for next week.]_P [The story continues:]_{DP} [Jennifer felt bittersweet about it.]_{UH} ack of baking pans in a large kitchen presenting them. the pans P [contain egg yolks]

as time goes by, it becomes less and less, so what are we going to do when it runs out which of the following statements is true $P[?]_{DP}$ answer: [There is more petroleum]

P [the answer is:] $_{DP}$ [red blood cells.] $_{UH}$ el through?]_P [the answer is:]_{DP} [a steel spoon in a cafeteria.]_{UH} lling without getting wet?]_P [the answer is:]_{DP} [bridge.]_{UH}

ley Cup finals once, losing to the Pittsburgh Penguins in 2016 [...]_P question: [Have answer:]_{DP} [No.]_{UH}

nd Internet company.]_P question: [Time Warner is the world's largest company.]_P [true

mis laugh. She's such a serious child.]_P Is [I didn't know she had a sense of humor.]_P ue.]UH

" [[The quote] has a tone that is]_{DP} [positive.]_{UH}

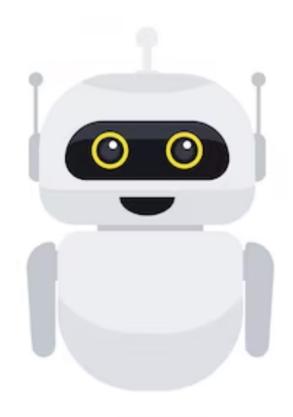
" [[The quote] has a tone that is]_{DP} [neutral.]_{UH}

In as the country experiences a drop in domestic and corporate $[...]_P$ summary: orts. UH

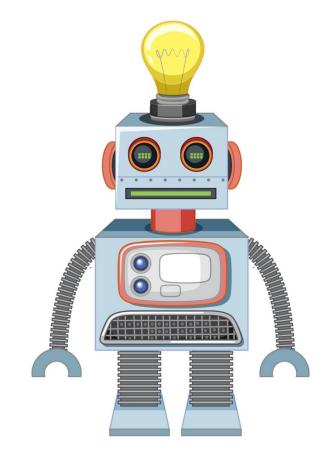
io?]_P [The answer to this question will be]_{DP} [a person.]_{UH}

42 / 71

Model



GPT-3 Zero-shot



GPT-2

Reported but won't be the focus of the results

Params. 2.7B					6.7B			13B				1	175B						
		Unc	LM	Avg	PMI _{DC}	CC	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	PMI _{DC}	C
	COPA	54.8	68.4	68.4	74.4	-	56.4	75.8	73.6	77.0	56.6	79.2	77.8	84.2	56.0	85.2	82.8	89.2	-
	SC	50.9	66.0	68.3	73.1	: 	51.4	70.2	73.3	76.8	52.0	74.1	77.8	79.9	51.9	79.3	83.1	84.0	-
	HS	31.1	34.5	41.4	34.2	-	34.7	40.8	53.5	40.0	38.8	48.8	66.2	45.8	43.5	57.6	77.2	53.5	-
	R-M	22.4	37.8	42.4	42.6	12	21.2	43.3	45.9	48.5	22.9	49.6	50.6	51.3	22.5	55.7	56.4	55.7	<u>.</u>
	R-H	21.4	30.3	32.7	36.0		22.0	34.8	36.8	39.8	22.9	38.2	39.2	42.1	22.2	42.4	43.3	43.7	1
	ARC-E	31.6	50.4	44.7	44.7	-	33.5	58.2	52.3	51.5	33.8	66.2	59.7	57.7	36.2	73.5	67.0	63.3	-
	ARC-C	21.1	21.6	25.5	30.5	12	21.8	26.8	29.8	33.0	22.3	32.1	34.3	38.5	22.6	40.2	43.2	45.5	922
	OBQA	10.0	17.2	27.2	42.8	1.7	11.4	22.4	35.4	48.0	10.4	28.2	41.2	50.4	10.6	33.2	43.8	58.0	3.77
	CQA	15.9	33.2	36.0	44.7	-	17.4	40.0	42.9	50.3	16.4	48.8	47.9	58.5	16.3	61.0	57.4	66.7	-
	BQ	62.2	58.5	58.5	53.5	-	37.8	61.0	61.0	61.0	62.2	61.1	61.1	60.3	37.8	62.5	62.5	64.0	-
	RTE	47.3	48.7	48.7	51.6	49.5	52.7	55.2	55.2	48.7	52.7	52.7	52.7	54.9	47.3	56.0	56.0	64.3	57
	CB	08.9	51.8	51.8	57.1	50.0	08.9	33.9	33.9	39.3	08.9	51.8	51.8	50.0	08.9	48.2	48.2	50.0	48
	SST-2	49.9	53.7	53.76	72.3	71.4	49.9	54.5	54.5	80.0	49.9	69.0	69.0	81.0	49.9	63.6	63.6	71.4	75
	SST-5	18.1	20.0	20.4	23.5	-	18.1	27.8	22.7	32.0	18.1	18.6	29.6	19.1	17.6	27.0	27.3	29.6	-
	AGN	25.0	69.0	69.0	67.9	63.2	25.0	64.2	64.2	57.4	25.0	69.8	69.8	70.3	25.0	75.4	75.4	74.7	73
	TREC	13.0	29.4	19.2	57.2	38.8	22.6	30.2	22.8	61.6	22.6	34.0	21.4	32.4	22.6	47.2	25.4	58.4	57
		/																	

arg $maxP(y_i|x_{domain})$ ignore the premise completely! Consistently beat or tie other methods across model sizes and datasets

Accuracy

Holtzman et al., 2021

Prompt Robustness

Prompt Robustness on SST-2

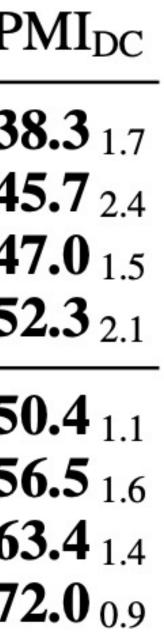
	1101	inpt Roou		1 2	SST-2					CQA		
_	Method	Unc	LM	PMI _{DC}	Method	Unc	LM	PMI _{DC}	Unc		Avg	PI
GPT-2	125M 350M 760M 1.6B	49.9_{0} 49.9_{0} 49.9_{0} 49.9_{0}	56.8 _{7.3} 58.0 _{11.3} 57.0 _{9.2} 57.3 _{8.2}	58.8 7.6 60.3 11.4 67.7 13.4 69.8 13.3	350M 760M	49.9 ₀ 49.9 ₀	63.6 _{7.4} 76.3 _{13.8} 85.9 _{7.2} 85.4 _{1.7}	76.4 _{8.1} 87.1 _{3.0}	16.5 ₀ 16.1 ₀	37.6 _{2.3} 41.5 _{2.6}	$40.4_{2.3}$ $542.4_{2.5}$	3 45 5 47
- GPT-3	2.7B 6.7B 13B 175B	49.9 ₀ 49.9 ₀ 49.9 ₀	$56.1_{9.0}$ $59.5_{10.7}$ $63.0_{14.9}$ $72.5_{15.7}$	66.2 15.7 67.9 13.6 71.7 16.1	2.7B 6.7B 13B	49.9 ₀ 49.9 ₀ 49.9 ₀	88.1 4.9 92.9 2.1 85.4 9.0 89.9 5.5	87.7 _{5.5} 79.8 _{6.9} 86.9 _{7.5}	16.6 ₀ 16.9 ₀ 16.7 ₀	43.0 _{1.7} 52.3 _{1.4} 58.4 _{2.0}	45.6 _{1.9} 53.4 _{1.0} 59.3 _{1.5}	5 50 5 63

maintain the highest mean using 15 different templates for SST-2

but still high variance

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

4-shot Inference Results



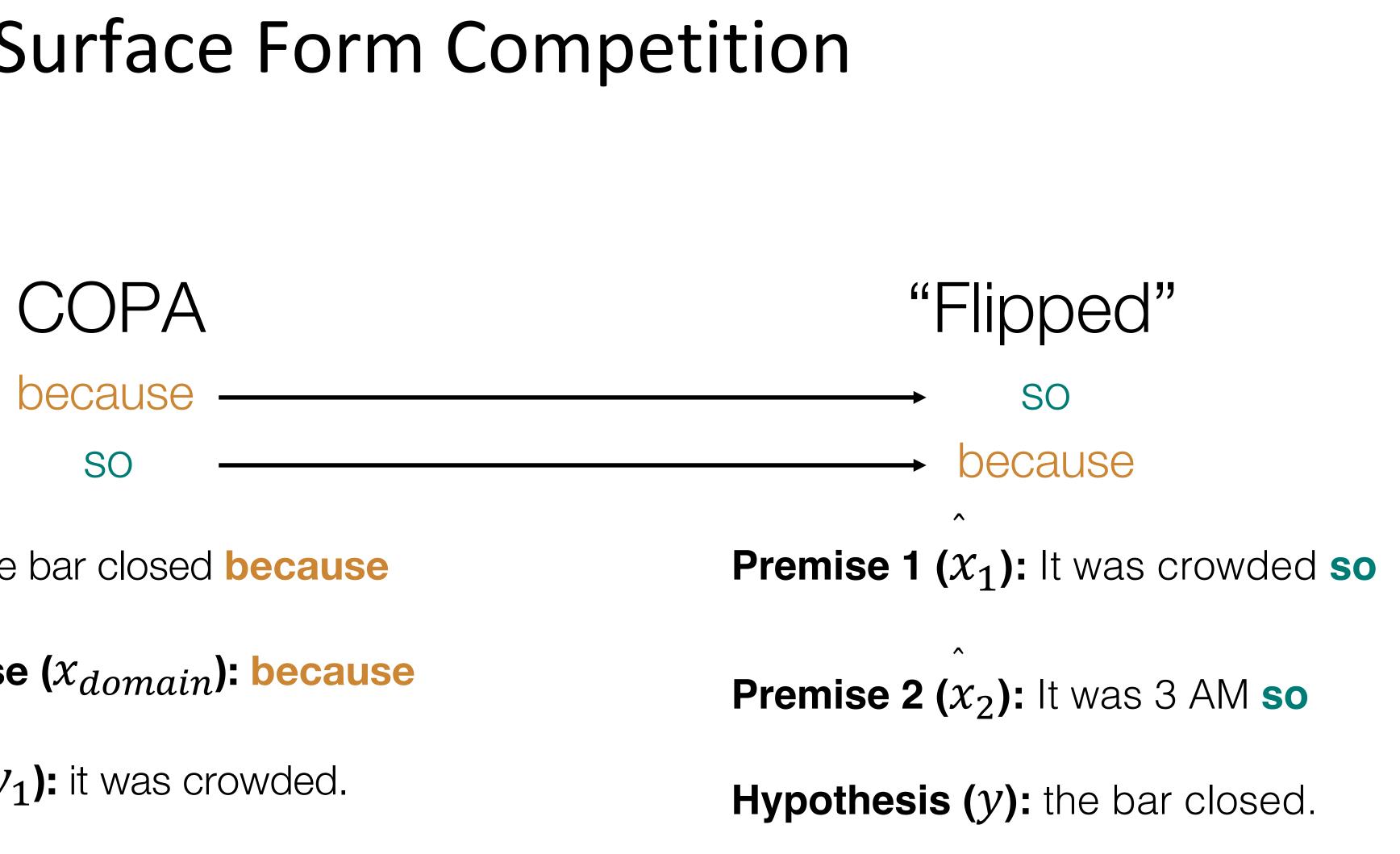


Removing Surface Form Competition

The bar closed because it was 3 AM I tipped the bottle so the liquid in the bottle poured out

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

Removing Surface Form Competition



Premise (*x***):** The bar closed **because**

Domain Premise (x_{domain} **): because**

Hypothesis 1 (y_1) : it was crowded.

Hypothesis 2 (y_2): it was 3 AM.

Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021



Rem	Removing Surface Form Competition													
									50.0 because the outputs are now th same for the two different inputs					
		(COPA			COPA	Flipp	ed						
Method	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	PMI _{DC}						
125M	56.4	61.0	63.2	62.8	50.0	63.2	63.2	63.2						
350M	55.8	67.0	66.0	70.0	50.0	66.4	66.4	66.4	LM, Avg , and PMI_{DC} are the					
760M	55.6	69.8	67.6	69.4	50.0	70.8	70.8	70.8	without surface form competing					
1.6B	56.0	69.0	68.4	71.6	50.0	73.0	73.0	73.0						
2.7B	54.8	68.4	68.4	74.4	50.0	68.4	68.4	68.4						
6.7B	56.4	75.8	73.6	77.0	50.0	76.8	76.8	76.8						
1 3 B	56.6	79.2	77.8	84.2	50.0	79.0	79.0	79.0						
1 75B	56.0	85.2	82.8	89.2	50.0	83.6	83.6	83.6						
					'									

better on COPA than COPA Flipped since "because" and "so" are not perfectly invertible and the original phrases sound more nat Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

the same petition

Removing Surface Form Competition

Premise (*x***):** The bar closed **because**

Domain Premise (x_{domain} **): because**

Hypothesis 1 (y_1) : it was crowded.

Hypothesis 2 (y_2) : it was 3 AM.

Hypothesis 2' (y'_2) : it was 3:30AM.

 $P(y_1|x) > p(y_2'|x)$ $\log P(y_2|x) \approx -16$

 $P(\hat{y}|\hat{x}_{2}') > P(\hat{y}|\hat{x}_{1}')$

 $\frac{P(y_2'|x)}{P(y_2'|x_{domain})} > \frac{P(y_1|x)}{P(y_1|x_{domain})}$ both probabilities low due to surface form competition! Holtzman et al., Surface Form Competition: Why the Highest Probability Answer Isn't Always Right, EMNLP 2021

Premise 1 ($\hat{\chi}_1$): It was crowded **so**

Premise 2 (\hat{x}_2 **)**: It was 3 AM **so**

Hypothesis (\hat{y} **):** the bar closed.

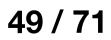
Premise 2' (\hat{x}'_2) : It was 3:30AM so

 $\log P(y_2'|x) \approx -20$

 $\log P(\hat{y}|\hat{x}_2) \approx -12$

 $\log P(\hat{y}|\hat{x}_2') \approx -12$

no competition \rightarrow similarly high probabilities



Noisy Channel (Min et al., 2022)

(x, y)=("A three-hour cinema master class.", "It was great.")

P(y|x)Direct

Input

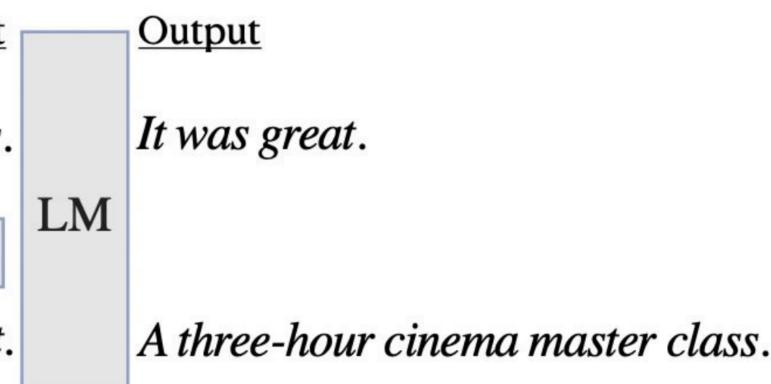
A three-hour cinema master class.

Channel $P(x|y)P(y) \propto P(x|y)$

It was great.

Note

another alternative to calibrate the probability of final output



So far ...

 $\underset{i}{\operatorname{argmax}} \frac{P(y_i | x, C)}{p(y_i | [N/A], C)}$ Contextual Calibration (CC)Domain Conditional PMI $\underset{i}{\operatorname{argmax}} \frac{P(y_i|x, C)}{P(y_i|x_{domain}, C)}$

both papers focuses on novel ways to calculate the probabilities for language modeling

improve performance with minimal changes

$s^{(i)} = \text{Template}(x^{(i)}, y^{(i)})$ $C = \operatorname{Concat}(s^{(i)}, \dots, s^{(k)})$ p(y|x,C)

effective for single token outputs but not suited for multi-token generation.

removes surface form competition and generic output bias. However, domain specific string is subjective and difficult to choose the best one to use.

Mitigating Label Biases for In-context Learning

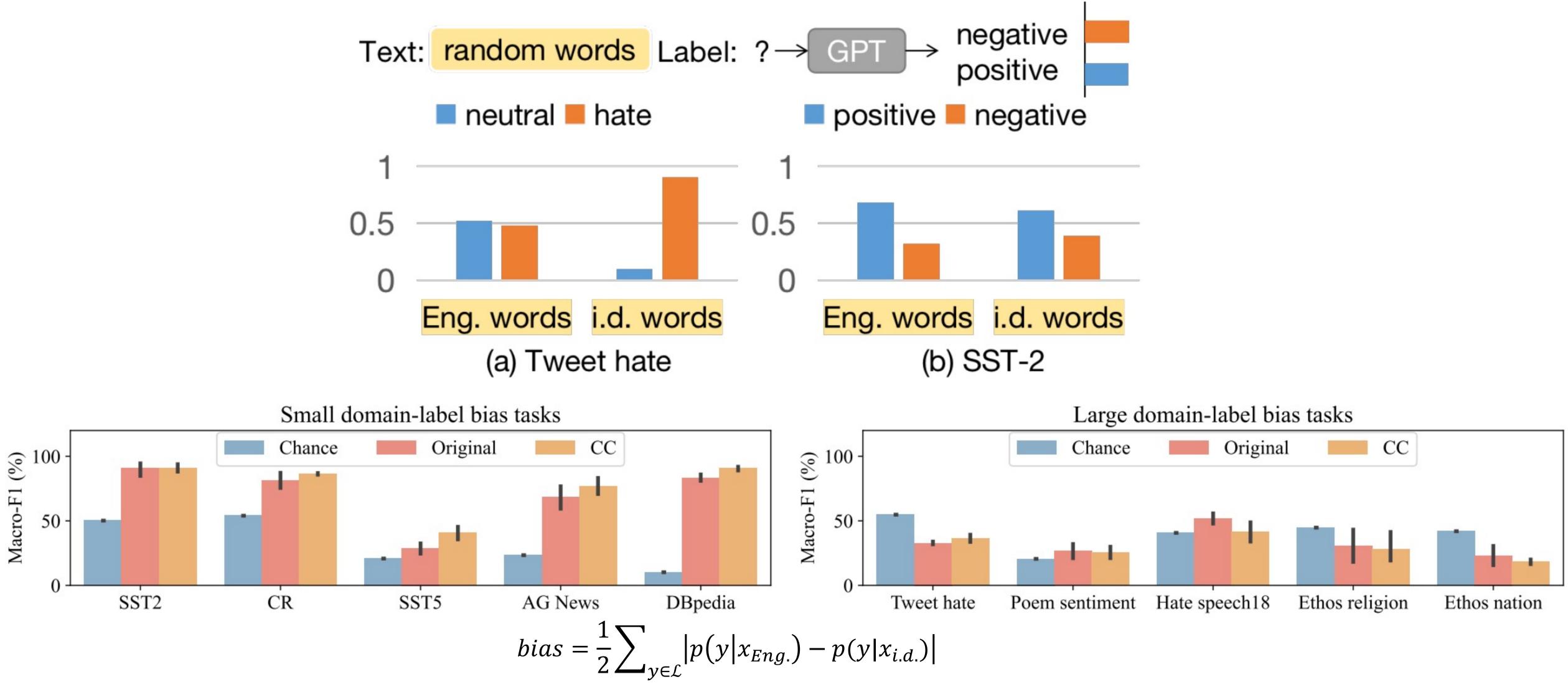
Yu Fei^{†1}, Yifan Hou^{*2}, Zeming Chen^{*3}, Antoine Bosselut³
¹UC Irvine, ²ETH Zurich, ³NLP Lab, IC, EPFL, Switzerland yu.fei@uci.edu, yifan.hou@inf.ethz.ch, {zeming.chen, antoine.bosselut}@epfl.ch

Label Biases in ICL

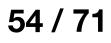
- Vanilla-label bias
- Context-label bias
- Domain-label bias

Yu Fei et al., Mitigating label biases for in-context learning, ACL 2023

Domain label bias



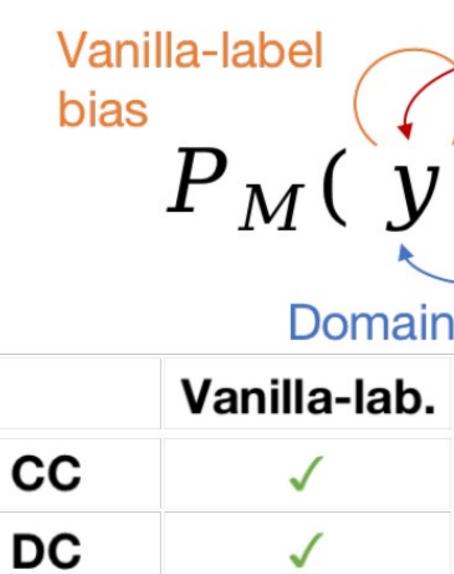
Yu Fei et al., Mitigating label biases for in-context learning, ACL 2023



Domain-Context Calibration

$$\bar{p}(y|C) = \frac{1}{T} \sum_{t=1}^{T} p(t)$$

 $\hat{y}_i = \arg_y$



Yu Fei et al., Mitigating label biases for in-context learning, ACL 2023

$(y|[Random i.d.text]_t, C)$

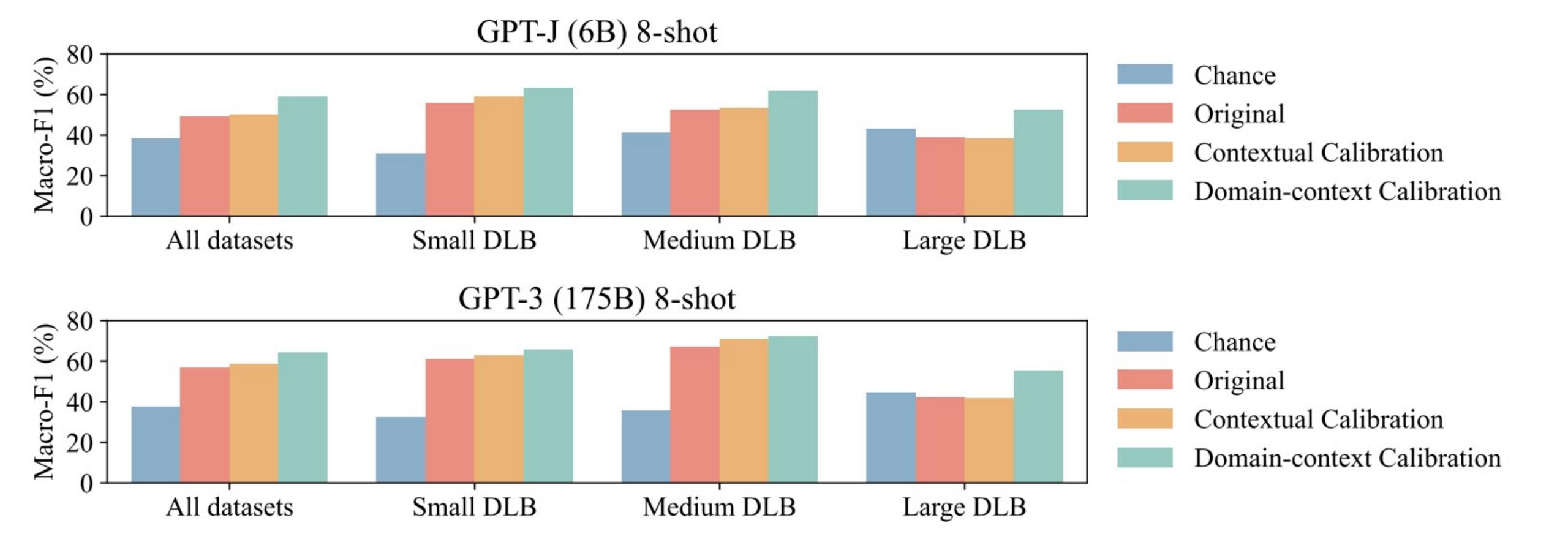
$$\max_{y \in \mathcal{L}} \frac{p(y|x_i, C)}{\bar{p}(y|C)}$$

Domain-label bias

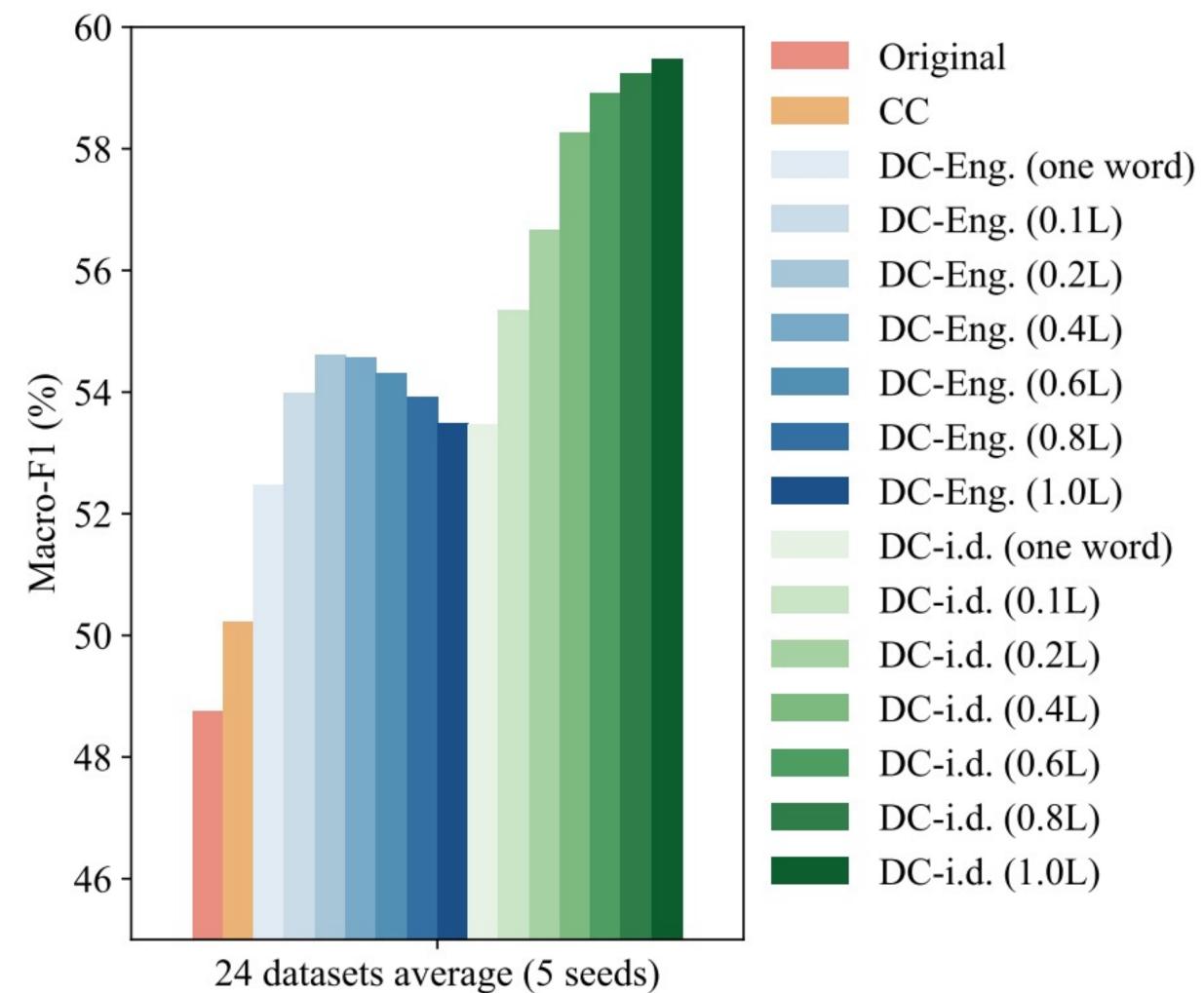
Context-lab.	Domain-lab.
\checkmark	X
\checkmark	\checkmark



Domain-Context Calibration



Yu Fei et al., Mitigating label biases for in-context learning, ACL 2023



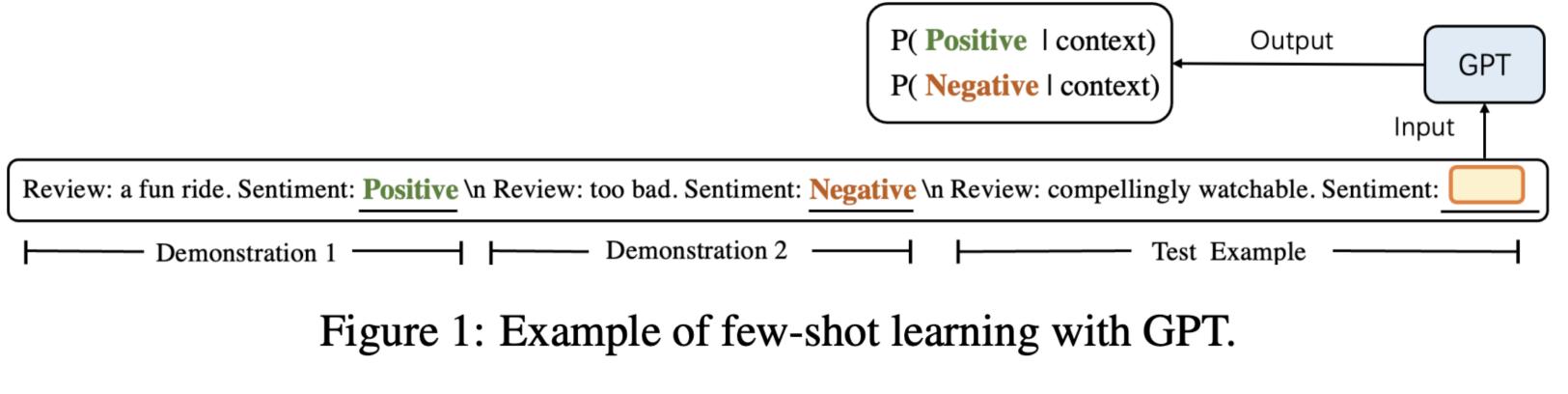
Published as a conference paper at ICLR 2023

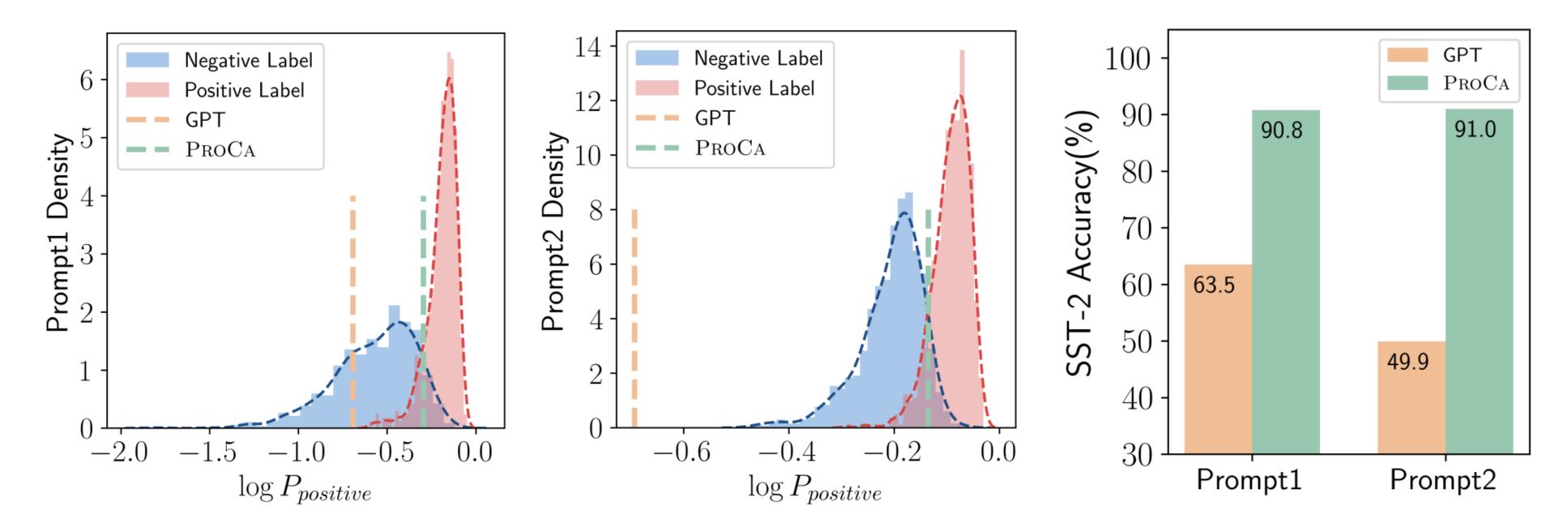
PROTOTYPICAL CALIBRATION FOR FEW-SHOT LEARNING OF LANGUAGE MODELS

Zhixiong Han, Yaru Hao, Li Dong, Yutao Sun, Furu Wei Microsoft Research

{zhixhan8, sunyutao20001121}@gmail.com, {yaruhao,lidong1,fuwei}@microsoft.com

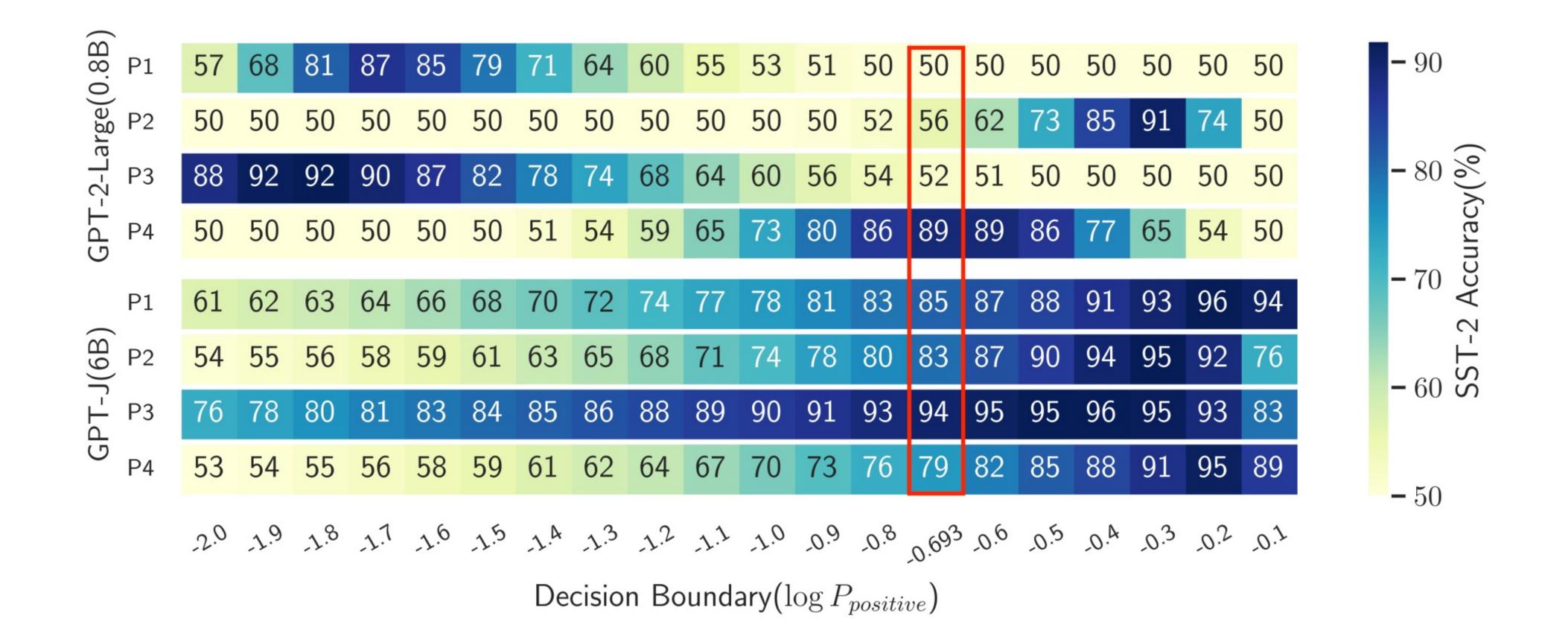
Prototypical Calibration for Few-shot Learning





Han et al., Prototypical Calibration for Few-shot Learning, ICLR 2023

Decision boundary greatly influences the few-shot performance



Han et al., Prototypical Calibration for Few-shot Learning, ICLR 2023

Prototypical Calibration for Few-shot Learning

- PC adaptively learn a decision boundary for few-shot classification:
 - It estimates N prototypical clusters for the model output p for N classes

$$P_{\text{GMM}}(X) = \sum_{n=1}^{N} \alpha_n$$

- Then, assign labels to clusters according to labels of few-shot examples
- Inference time:

$$\tilde{n} = \underset{n=1,\cdots,N}{\operatorname{arg\,max}} P_{G}(x|\mu_{n}^{*}, \Sigma_{n}^{*}).$$

Han et al., Prototypical Calibration for Few-shot Learning, ICLR 2023

Performant decision boundaries are inconsistent across language models and prompts.

 $_{n}P_{\mathbf{G}}(X|\boldsymbol{\mu}_{n},\boldsymbol{\Sigma}_{n}),$

61 / 71

Shot	Method	SST-2	SST-5	MR	Subj	AP	AGNews	DBpedia	RTE	TREC	Avg
				G	FPT-2-XL	1.5B					
0-shot		58.7 _{0.0} 69.3 _{0.0} 84.8 _{0.2}	$\begin{array}{c} 28.4_{0.0} \\ 22.6_{0.0} \\ \textbf{45.0}_{1.3} \end{array}$	$66.9_{0.0}$	57.6 _{0.0} 72.9 _{0.0} 73.3 _{0.1}	$\begin{array}{c} \textbf{51.8}_{0.0} \\ \textbf{49.8}_{0.0} \\ \textbf{49.8}_{0.3} \end{array}$	41.6 _{0.0} 67.7 _{0.0} 64.6 _{1.4}	60.3 _{0.0} 54.3 _{0.0} 73.6 _{3.0}	50.4 0.0	$\begin{array}{c} 28.6_{0.0} \\ \textbf{42.8}_{0.0} \\ 42.0_{2.7} \end{array}$	55.2
1-shot	GPT ConCa PROCA	$\begin{array}{c} 59.8_{14.0} \\ 76.4_{2.2} \\ \textbf{89.4}_{2.4} \end{array}$	$30.2_{5.7}$	$69.4_{5.0}$	$\begin{array}{c} 54.5_{8.6} \\ 62.0_{7.0} \\ \textbf{71.8}_{5.7} \end{array}$	$51.0_{0.1} \\ 60.3_{4.0} \\ 69.8_{8.2}$	$\begin{array}{c} 37.4_{6.7} \\ 65.0_{3.8} \\ \textbf{69.8}_{4.3} \end{array}$	$51.3_{12.7} \\ 70.9_{7.4} \\ \textbf{79.9}_{3.8}$	53 .1 _{0.9}	$\begin{array}{c} 29.1_{6.5} \\ 40.5_{3.3} \\ \textbf{43.6}_{5.0} \end{array}$	58.6
4-shot		$\begin{array}{c} 66.3_{13.7} \\ 79.9_{10.2} \\ \textbf{90.4}_{0.6} \end{array}$	$33.5_{3.5}$	67.78.9	$\begin{array}{c} 53.4_{4.9} \\ 68.0_{8.7} \\ \textbf{74.8}_{10.2} \end{array}$	$\begin{array}{c} 50.9_{0.1} \\ 75.6_{5.9} \\ \textbf{80.1}_{7.1} \end{array}$	$\begin{array}{c} 40.9_{13.0} \\ 59.9_{6.3} \\ \textbf{67.4}_{13.5} \end{array}$	61.3 _{7.6} 74.9 _{5.0} 87.2 _{4.9}	52.9 _{0.7}	$\begin{array}{c} 23.8_{5.7} \\ 41.1_{4.3} \\ \textbf{46.0}_{2.5} \end{array}$	61.5
8-shot		$\begin{array}{c} 57.0_{9.0} \\ 73.9_{11.6} \\ \textbf{88.0}_{1.3} \end{array}$	$28.7_{3.4}$	$74.1_{8.4}$		$71.1_{7.4}$	$\begin{array}{c} 42.9_{4.2} \\ 55.9_{14.0} \\ \textbf{75.5}_{3.2} \end{array}$	$\begin{array}{c} 67.9_{7.1} \\ 75.0_{4.2} \\ \textbf{89.4}_{0.7} \end{array}$	53.1 _{0.2}	$\begin{array}{c} 37.2_{4.9} \\ 45.8_{1.7} \\ \textbf{46.0}_{2.5} \end{array}$	60.7
					GPT-J 6	БB					
0-shot		66.6 _{0.0} 57.7 _{0.0} 74.2 _{0.2}	$35.4_{0.0}$		67.9 _{0.0} 59.9 _{0.0} 69.5 _{0.2}		33.7 _{0.0} 60.1 _{0.0} 55.1 _{0.4}	$\begin{array}{c} 21.8_{0.0} \\ 49.9_{0.0} \\ \textbf{66.1}_{1.5} \end{array}$	55.60.0	$\begin{array}{c} 23.4_{0.0} \\ 42.2_{0.0} \\ \textbf{53.4}_{6.1} \end{array}$	53.4
1-shot	GPT ConCa PROCA		$\begin{array}{c} 31.7_{4.9} \\ 46.5_{3.4} \\ \textbf{47.6}_{2.5} \end{array}$		$\begin{array}{c} 65.0_{10.9} \\ 58.8_{3.0} \\ \textbf{77.9}_{4.8} \end{array}$	$\begin{array}{c} 92.9_{2.7} \\ 93.5_{1.3} \\ \textbf{95.1}_{0.5} \end{array}$	65.6 _{14.6} 75.5 _{5.7} 79.8 _{5.4}	$\begin{array}{c} 65.6_{14.8} \\ 79.9_{3.3} \\ \textbf{90.0}_{2.2} \end{array}$	$53.1_{0.8}$	$\begin{array}{c} 41.8_{9.0} \\ \textbf{64.7}_{5.3} \\ 55.3_{6.4} \end{array}$	72.2
4-shot	GPT ConCa PROCA		$\begin{array}{c} 44.7_{3.3} \\ \textbf{47.7}_{4.4} \\ 46.2_{4.6} \end{array}$		58.2 _{6.3} 66.5 _{11.7} 79.4 _{5.8}	$\begin{array}{c} 89.4_{10.0} \\ 93.4_{1.0} \\ \textbf{95.8}_{0.8} \end{array}$	72.1 _{6.5} 76.4 _{4.0} 79.9 _{6.6}	$\begin{array}{c} 80.5_{13.2} \\ 88.6_{3.0} \\ \textbf{91.9}_{2.6} \end{array}$	$54.7_{1.5}$	$\begin{array}{c} 38.1_{5.4} \\ 48.5_{4.9} \\ \textbf{57.1}_{5.3} \end{array}$	72.9
8-shot	GPT ConCa PROCA	91.1 _{6.2} 93.4 _{1.8} 94.4 _{1.0}	$\begin{array}{c} 44.9_{2.9} \\ 46.6_{4.4} \\ \textbf{47.4}_{4.4} \end{array}$	90.10.5		96.2 _{0.3}	76.9 _{9.7} 79.9 _{6.4} 84.2 _{1.8}	$\begin{array}{c} 87.7_{3.1} \\ 90.8_{2.0} \\ \textbf{95.1}_{0.5} \end{array}$	59.64.8	$\begin{array}{c} 44.4_{5.6} \\ 53.5_{7.9} \\ \textbf{61.0}_{7.6} \end{array}$	76.7
					Bloom 17	'6B					
0-shot	Bloom ConCa PROCA		$\begin{array}{c} 26.0_{0.0} \\ 25.3_{0.0} \\ \textbf{31.8}_{0.2} \end{array}$		53.3 _{0.0} 49.0 _{0.0} 61.3 _{0.3}	60.1 _{0.0} 51.1 _{0.0} 80.4 _{0.8}	27.1 _{0.0} 38.2 _{0.0} 60.1 _{3.5}	48.5 _{0.0} 61.0 _{0.0} 75.8 _{0.1}	53.80.0	59.0 _{0.0} 41.0 _{0.0} 52.9 _{0.5}	51.7
1-shot	Bloom ConCa PROCA			$\begin{array}{c} 84.6_{2.3} \\ 86.8_{1.6} \\ \textbf{88.0}_{0.8} \end{array}$	$\begin{array}{c} 60.4_{8.5} \\ 51.2_{2.5} \\ \textbf{72.0}_{1.8} \end{array}$	96.1 _{0.1} 96.1 _{0.4} 95.7 _{0.4}	67.6 _{0.9} 78.4 _{0.5} 81.6 _{0.7}	$\begin{array}{c} 81.8_{2.0} \\ 80.4_{1.9} \\ \textbf{83.7}_{1.8} \end{array}$	$54.0_{5.6}$	$\begin{array}{c} 55.1_{7.1} \\ \textbf{69.3}_{1.3} \\ 67.5_{2.5} \end{array}$	71.9
4-shot	ConCa	$\begin{array}{c} \textbf{96.3}_{0.1} \\ \textbf{96.0}_{0.1} \\ \textbf{95.7}_{0.2} \end{array}$		89.7 _{1.1}		$94.2_{1.9}$		86.2 _{1.4} 86.6 _{2.4} 87.0 _{1.3}	$56.3_{0.7}$	$\begin{array}{c} 29.1_{0.9} \\ \textbf{64.8}_{7.6} \\ 56.8_{4.8} \end{array}$	75.9
8-shot	ConCa	96.1 _{0.2}	$42.2_{5.5}$	$91.0_{0.9}$	$75.8_{1.7}$	$95.9_{0.4}$	$\begin{array}{c} 75.4_{1.9} \\ 81.9_{2.0} \\ \textbf{82.1}_{2.0} \end{array}$	89.5 _{2.6}	$59.0_{0.5}$	$\begin{array}{c} 48.9_{6.7} \\ \textbf{73.9}_{1.1} \\ 68.6_{7.8} \end{array}$	78.4

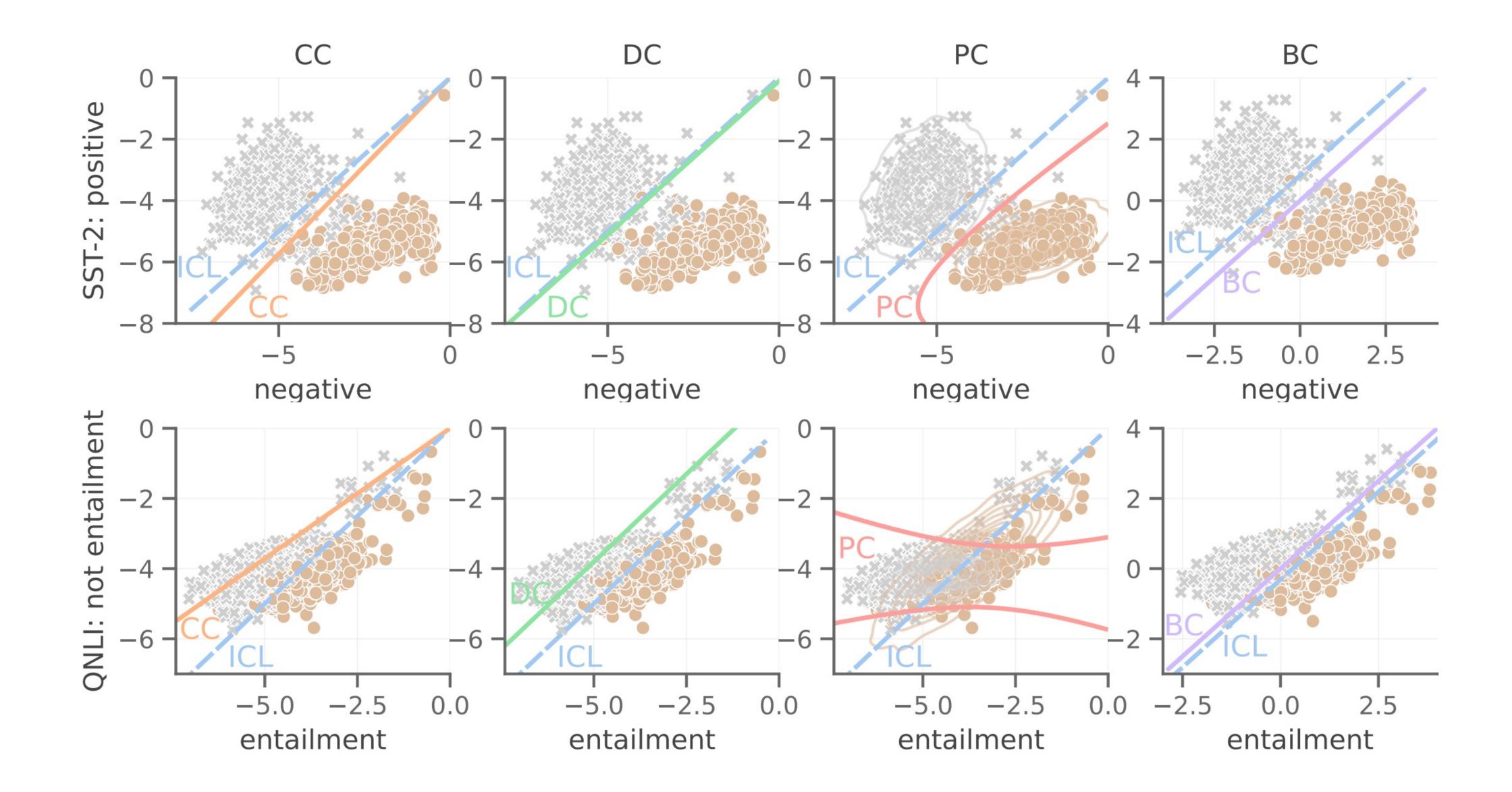
Han et al., Prototypical Calibration for Few-shot Learning, ICLR 2023

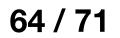
BATCH CALIBRATION: RETHINKING CALIBRATION FOR IN-CONTEXT LEARNING AND PROMPT ENGINEERING

Han Zhou^{1,2,*} Xingchen Wan¹ **Diana Mincu**¹ Lev Proleev¹ Jilin Chen¹

Subhrajit Roy¹ **Katherine Heller**¹

¹ Google Research ² University of Cambridge





Questions

- What is the disadvantage of non-linear decision boundaries?
 - from instability in EM-GMM

- Is content-free input a good estimator of the contextual prior?
 - additional bias, depending on the task type.

non-linear decision boundaries learned by PC tend to be susceptible to overfitting and may suffer

relying on content-free tokens for calibration is not always optimal and may even introduce

Batch Calibration

- only involves unlabeled test samples
- marginalizing the LLM scores in the batched input.
- extends BC to the black-box few-shot learning (BCL)
 - bias from the available data resources.

Batch Calibration (BC), a zero-shot and self-adaptive (inference-only) calibration

BC accurately models the bias from the prompt context (i.e. contextual bias) by

introducing a single learnable parameter into BC, which enables it to adapt and learn the contextual

Batch Calibration

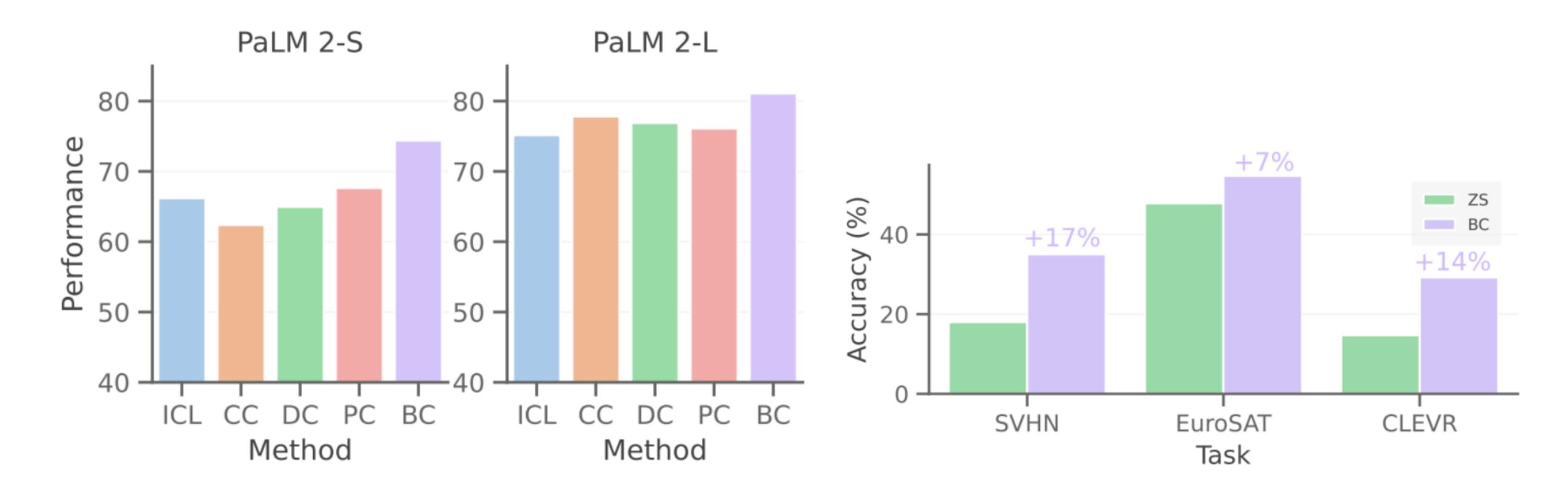
- Uses linear decision boundary for its robustness
- from a batch with M samples:

$$\mathbf{p}(y=y_j|C) = \mathbb{E}_{x \sim P(x)} \left[\mathbf{p}(y=y_j|x,C) \right] \approx \frac{1}{M} \sum_{i=1}^M \mathbf{p}(y=y_j|x^{(i)},C) \,\forall \, y_j \in \mathcal{Y}.$$

Zhou et al., Batch calibration: Rethinking calibration for in-context learning and prompt engineering

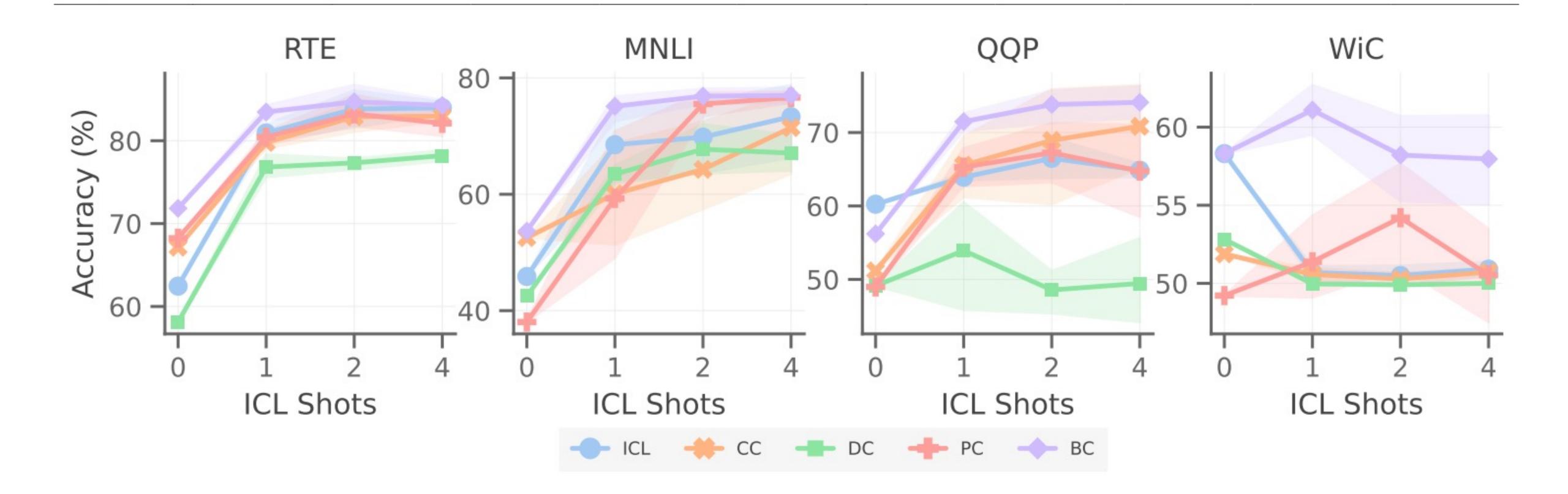
• Instead of relying on content-free tokens, estimates the contextual bias for each class

Results



Batch Calibration (BC) achieves the best performance on 1-shot ICL over CC, DC, and PC on an average of 13 NLP tasks on PaLM 2 and outperforms the zero-shot CLIP on image tasks.

Results on PaLM 2-S



Unified framework

Method	Token	#Forward	Comp. Cost	Cali. Form	Learning Term	Decision Boundary $h(\mathbf{p})$	Multi- Sentence	Mu Cl
CC	N/A	1 + 1	Inverse	$\mathbf{W}\mathbf{p} + \mathbf{b}$	$\mathbf{W} = \operatorname{diag}(\hat{\mathbf{p}})^{-1}, \mathbf{b} = 0$	$p_0 = lpha p_1$	×	
DC	Random	20 + 1	Add	$\mathbf{W}\mathbf{p} + \mathbf{b}$	$\mathbf{W} = \mathbf{I}, \mathbf{b} = -rac{1}{T}\sum_t \mathbf{p}(y ext{text}_j, C)$	$p_0 = p_1 + lpha$	×	1
PC	-	1	EM-GMM	-	$\sum_j lpha_j P_G(\mathbf{p} oldsymbol{\mu_j}, \mathbf{\Sigma_j})$	$P_{\mathrm{G}}(\mathbf{p} \mu_0,\Sigma_0)=P_{\mathrm{G}}(\mathbf{p} \mu_1,\Sigma_1)$	\checkmark	
BC (Ours)	-	1	Add	$\mathbf{W}\mathbf{p} + \mathbf{b}$	$\mathbf{W} = \mathbf{I}, \mathbf{b} = - \mathbb{E}_x \left[\mathbf{p}(y x, C) ight]$	$p_0 = p_1 + lpha$	✓	

• CC: $\hat{p} = p(y|[N/A], C)$

- DC: $\hat{p}(y|C) = \frac{1}{\tau} \sum_{t=1}^{T} p(y | [RANDOM TEXT]_t, C)$
- PC: $\tilde{n} = \arg \max P_{G}(x|\mu_{n}^{*}, \Sigma_{n}^{*})$ $n=1,\cdots,N$
- $\hat{p}(y|C) = \mathbb{E}_{x}[p(y|x,C)] \approx \frac{1}{M} \sum_{i=1}^{M} p(y|x^{(i)},C)$ • BC:

$$_{i}).$$

Conclusion

- PMI-DC: calibrates the LLM given domain tokens (e.g., "?", "because")
- Domain-context Calibration (DC): calibrates the LLM given random i.d. tokens
- unlabeled samples
- unlabeled samples

 Contextual Calibration (CC): calibrates the LLM given content-free tokens ("N/A") Prototypical Calibration (PC): learning a robust non-linear decision boundary using

Batch Calibration (BC): estimates the contextual bias for each class from a batch of

